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Ab s t  r a c t 

I n  recent years there  has been a great  i n t e r e s t  i n  t he  study of 

methods f o r  computing the solution of an i n i t i a l  value problem numerically. 

Most methods used form a difference analog t o  the  d i f f e r e n t i a l  equation and 

use the  solut ion of the difference analog a s  an approximation f o r  t h e  solut ion 

of t he  d i f f e r e n t i a l  equation. Most of  t he  work done t o  da te  i s  concerned with 

estimating the  difference between the t r u e  solut ion and the  computed solut ion 

on a f i n i t e  interval .  

t h e  d i f f e r e n t i a l  equation o r  f inding a periodic solut ion a r e  i n t r i n s i c a l l y  

involved w i t h  unbounded in te rva ls .  When a difference analog i s  used i n  these 

cases, t h e  question becomes not one of how accurate i s  the approximation on a 

f i n i t e  i n t e r v a l  but do the solut ions of the  difference analog display the  

same proper t ies  a s  do the  solut ions of t he  d i f f e r e n t i a l  equation. 

Such problems as determining s t a b i l i t y  propert ies  of 

The questions concerning s t a b i l i t y  propert ies  of the difference 

analog led t o  research which i s  reported i n  a paper by the  author en t i t l ed  

"Some S t a b i l i t y  Theorems f o r  Difference Equations". This paper has been sub- 

mitted t o  the  SIAM Journal on Numerical Analysis f o r  publication. 

i n  t h i s  paper have application t o  other areas of Numerical Analysis, notably 

The theorems 

i t e r a t i o n  theory, and t o  sampled data control  systems. 

I n  t h i s  thes i s ,  t he  problem of f inding periodic, almost periodic, 

and bounded solutions of a difference analog t o  a d i f f e r e n t i a l  equation a re  

considered. 

behavior of a difference analog can be d i f f e ren t  from t h a t  of t h e  d i f f e r e n t i a l  

equation. 

cussed and, i n  order t o  have the  period depend continuously on the  parameters. 

I n  the  introduction, several  examples a re  given t o  show how the  

The problem of periodic solutions of t he  difference analog i s  d i s -  

-c_ --- -_ - --------4 - -- . -~ .I.p .I---- - -  



i n  t he  difference analog, the  solutions must be extended from the  integers  t o  

the  rea ls .  Definit ions of and theorems related t o  solutions on the  r e a l s  a r e  

given. 

The propert ies  of solutions of Linear and Affine difference equations 

a re  discussed and a noncr i t ica l  case i s  t reated i n  some de ta i l .  The noncri t ica  

case considered i s  when the  l inear  par t  has a constant matrix which has no 

eigenvalues on the  uni t  c i r c l e .  

ence of a periodic, almost periodic, or bounded solution of a nonc r i t i ca l  

difference equation when the  nonlinearity has a small parameter. 

A theorem i s  presented concerning t h e  ex is t -  

The simplest c r i t i c a l  case, where the  matrix of the  l inear  par t  i s  

the  i d e n t i t y  matrix, i s  discussed and a theorem i s  given concerning the  ex is t -  

ence of a T-periodic solution where T i s  a r a t i o n a l  number. Finally, an 

averaging method and an invariant  manifold method are '  given, each w i t h  an 

appl icat ion which proves t h a t ,  under cer ta in  conditions, cer ta in  difference 

analogs do display the  same behavior as t he  corresponding d i f f e r e n t i a l  equation 

The Crude Euler analog of  2 = Ef(t,x) has an almost periodic solut ion f o r  E 

and h 

an almost periodic solution of  the  d i f f e r e n t i a l  equation. The c e n t r a l d i f f e r -  

ence analog t o  the  Van der  Pol equation % + 2E%(x2-1)+x = 0 bas an hvariant 

curve 'of radius  approximately 2 f o r  E > 0 and small. 

small enough under the'same conditions which insure the  existence of  

. 



INTRODUCTION. 

Consider the  i n i t i a l  value problem given i n  (1) where x and 

5 = f ( t , x )  x(to) = xo ( 1) 

f ( t ,x )  

time and k = dx/dt. 

study o f  methods fo r  computing the solution t o  (1) numerically [ 1,2]. 

numerical methods divide time in to  increments w i t h  spacing 

tk to+ kh and form the difference analog (2). 

a re  n-vectors (n-dimensional vectors),  t is a r e a l  number cal led 

I n  recent  years t he re  has been a great i n t e r e s t  i n  the  

Most 

h such t h a t  

x(t,) = 5 , 0 d k d N .. 

The solut ion t o  tbe difference equation (2) i s  then taken as an approximation 

t o  t h e  solution of (1). However, most of the work t o  date  i s  concerned w i t h  

computing the  solution on a f i n i t e  interval,  say f o r  t 5 t d tl. Such 

problems a s  determining s t a b i l i t y  properties of ( 1) o r  f inding periodic solu- 

t i o n s  of (1) are  i n t r i n s i c a l l y  involved w i t h  the  unbounded in t e rva l s  

0 

to d t 00 o r  -00 < t e 00,  When the difference analog (2)  i s  used i n  these 

cases, the question becomes not one of how accurate i s  the approximation on 
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a f i n i t e  i n t e rva l  but do the  solutions of (2) display the  same propert ies  

as the  solutions of (l)? 

Several very simple cases w i l l  be covered here a s  a p a r t i a l  answer 

t o  t h i s  question. Consider f i rs t  the difference equation ( 3 ) .  

(3) x(k+l) = Ax(k) 

1 

where 

If the  eigenvalues of the  r e a l  matrix A a r e  X1 and b, Al # A2, then 

all solut ions of (e) a re  of the  form 

k k x(k) = cX1 + dh2 

where c and d a re  constant 2-vectors. The or ig in  x(k) = 0 i s  a l so  a 

solution. The behavior of the solutions‘ near t he  or ig in  i s  completely deter-  

mined by the values of Al and A2. If lhll < 1 and I A21 < 1, then a l l  

so lu t ions  approach the  or ig in  as k +m. If X1 and A2 a re  real ,  then the  

o r ig in  i s  said t o  be a s tab le  node (SN). If A1 and A2 are  complex, then 

the  o r i g i n  i s  said t o  be a s tab le  focus (SF). I X1l = 1 A2( = 1, then a l l  

so lu t ions  remain bounded and the or igin i s  said t o  be , a  center ( C ) .  

-- 
If - 

I f  - 
I All > 1 and 1 X2\ > 1, then a l l  solutions become unbounded a s  k 00. I f  

Xl and X2 a re  real ,  the  or ig in  i s  said t o  be an unstable node (UN) and if - 
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the  eigenvalues a re  complex, the or igin i s  said t o  be an unstable focus (UF). 

If 

(SP). 

- 
I X1l > 1 and 1 X2i < 1, then  the or ig in  i s  said t o  be a saddle point - 

The terms s t ab le  node, s table  focus, center, e tc . ,  come from d i f f e r -  

e n t i a l  equations and a re  used here because the behavior of the  solutions o f  

the 'difference equation i s  very similar t o  the  behavior of solutions of a 

d i f f e r e n t i a l  equation. 

For example, consider the difference equation (3) when the  matrix 

A is given by 

The eigenvalues of A a re  hl = eicu and % = e-i", and so t he  o r ig in  i s  

a center. Consider the funct ional  V(x) 

2 - 2 c o s o x x + x 2  2 . 
V(.) = x1  1 2  

.We see immediately t h a t  V(x(k+l)) = V(x(k)) f o r  any solution x(k) and 

hence t h a t  any solution remains on a l eve l  surface of V. 

of V 

A l e v e l  surface 

is an e l l i p s e  and hence the name center f o r  t h i s  type of behavior. 

The eigenvalues of A depend e n t i r e l y  on two numbers, B = 

Figure 1 

is a graph showing the  various regions of behavior i n  the  B,C plane. It 

+ 3 t r a c e  (A)  = + z(all+ 1 a22) and C = de t  (A)  = a11a22-a12a21. 

I 

should be noted that ,  on the  l i n e  B' = C, 

b i l i t y  of A not having simple elementary divisors .  However, since t h i s  - 
X1 = X2 and there  i s  the  possi- 

l i n e  i s  always a t r ans i t i on  l i ne  between two d i f f e ren t  types of behavior,' 

t h i s  r a i s e s  no serious question a t ' t h i s  time. 

_ _  ~ ~ 
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Using the  r e s u l t s  shown i n  Figure 1, several  difference analogs of 

the  d i f f e r e n t i a l  equation ( 4 )  a re  studied. 

I n  most cases, t he  d i f f e r e n t i a l  equation ( 4 )  w i l l  be wri t ten i n  the  vector 

form of (4').  

g2 = -xl-2dx2 

The behavior of t he  solutions of (4)  depend only on the  parameter 

o r ig in  i s  a center i f  d = 0, a s tab le  focus f o r  0 < d < 1 and a s tab le  

node f o r  1 < d < 00. The or ig in  i s  an unstable focus f o r  -1 < d < 0 and 

d. The 

an unstable node fo r  -CQ < d < -1. 

addi t iona l  parameter, the  spacing h, and the regions of t he  d,h plane f o r  

A l l  the  difference analogs w i l l  have an 

each type of behavior fo r  the  difference analog should be compared t o  t h i s  

ideal .  The var ia t ions w i l l  be noted. 

The first numerical method t o  be considered i s  the cen t r a l  d i f -  

ference analog where the  der ivat ives  of x i n  ( 4 )  a r e  replaced by t h e i r  

central, d i f ference approximations. 

Let t ing yl(k) = x(tkml ) and y2(k) = x(tk) ,  t h i s  becomes the  difference , 

equation (5) 



where 

The parameters a re  

1- hd 
2 

B = z -  and C = - . 1 2-h 
l+hd l+hd 

The regions of hehavior a re  shown i n  Figure 2. h > 2, t h e  

behavior i s  always t h a t  of a saddle point, a behavior which does not a t  a l l  

resemble any of t he  behaviors of solutions of the  d i f f e r e n t i a l  equation. 

Notice t h a t  f o r  

However, the  main region of i n t e r e s t  i s  f o r  h very small, Figure 2 shows 

the  behavior of solutions of ( 5 )  f o r  large because t h i s  gives a c learer  

p ic ture  of what happens f o r  small 

h 

h. 

For small h, we not ice  tha t  the  o r ig in  i s  a center when d = 0, 

is s t ab le  when d > 0 and unstable when d < 0 --- i n  agreement with the  

o r ig in  o f  the d i f f e r e n t i a l  equation. However, note t h a t  the  t r ans i t i on  from 

Focal behavior t o  Node1 behavior does not occur a t  

hd2+ h2 = 4. 

is a good method f o r  computing a solution t o  (4 )  numerically. 

d = 21 but on the  e l l i p s e  

S t i l l ,  from t h i s  point of view, the  c e n t r a l  difference analog 

The next method considered i s  the Crude Euler method [J], This 

method uses equation (4') and 4 s  described by the difference equation (5) 
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where 

2 The parameters a re  B = 1-hd and C = l-2hd+h . The regions of  behavior a r e  

shown i n  Figure 3 .  Notice that ,  f o r  h > 2, the behavior i s  always unstable. 

Also, f o r  small h and d = 0, the behavior i s  not t h a t  of  a center but 

t h a t  o f  an unstable focus. I f  h i s  small and 0 < d < i h ,  the  behavior 

of t h e  difference equation i s  t h a t  of an unstable focus instead of a s tab le  

focus. For large d, it i s  possible t o  get unstable behavior of t he  d i f -  

ference equation by having h large enough t o  be i n  the  saddle point region 

even though it i s  s t i l l  small. I n  order t o  get the  desired behavior i n  t h i s  

ease) we must take h much smaller than 2d i f  d i s  small and much smal- 

l e r  than l /d  i f  d i s  large. Notice that ,  f o r  d = 0, t h e  Crude Euler 

method behaves l i ke  an unstable focus f o r  any 

f o r  t he  d i f f e r e n t i a l  equation. 

h > 0 and not l i k e  the  center  

From t h i s  point of view, t h i s  method i s  not 

very acceptable. However, other  considerations must be used i n  passing 

judgement on any given method. 

I n  t h e  Corrected Euler method [ 3 ] ,  the  value of y(k+l) obtained 

from t h e  Crude Euler method i s  used as a f i rs t  approximation t o  the  solution 

at  tk+l. 
of in tegra t ion  t o  obtain a second approximation which i s  used as the  numeric 

solution, 

This f i r s t  approximation is used along w i t h  the Trapezoidal r u l e  

T h i s  difference analog of (4') i s  given by (5) where 

. 
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. .  

1-4 h 2 h( 1-hd) 
A =  ( 

-h( 1-hd) 1-$h2-2hd( 1-hd) 

10 

' (8) 

2 2 2  2 The parameters a re  B = 1-$h -hc(l-hc) and C = ( L & h  ) -2hc(l-hc)(l-*h )+ 
2 2 

h (1-hc) . The regions of behavior are shown i n  Figure 4. Notice that ,  

while t he  l i n e  of centers i s  no longer a s t r a igh t  l i n e  and comes much closer  

t o  the  h-axis, t h i s  f igure  i s  not much d i f f e ren t  from Figure 3 f o r  the  

Crude Euler method and t h a t  the  same comments apply. 

The f i n a l  method discussed here i s  the  I te ra ted  Euler method [3], 

sometimes called t h e  Modified Euler method. In  t h i s  method, t he  t rapezoidal  

rule of integrat ion i s  used t o  obtain second, third,  etc., approximations t o  

' the  solut ion a t  t = tk+l u n t i l  these i t e r a t i o n s  converge. The difference 

analog of ( 4 , )  is given by equation ( 5 )  where 

The parameters a re  

2 4-h 

' 4+4hd+h2 
B =  and C =  ( 4+h2)2- i6h2a2 

( 4+4hd +h2) * 

The regions of behavior a re  shown i n  Figure 5. 

t h i s  f i gu re  and the  idea l  f igure  i s  the saddle point region where there  should 

The only discrepancy between 

be an unstable node. However, f o r  d <-1, i f  we take h much smaller than 
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-l/d, then the behavior w i l l  be correct ly  t h a t  of  an unstable node, 

The significance of these examples i s  t h a t ,  i n  most cases, t he  

behavior of solutions of a difference analog t o  a d i f f e r e n t i a l  equation i s  

not t he  same a s  the behavior of solutions of t he  d i f f e r e n t i a l  equation, 

t he  case of a more general d i f f e r e n t i a l  equation, t h i s  var ia t ion  of  behavior 

can be detected only by computing the solution twice, once w i t h  h = ho and 

once w i t h  a considerably d i f f e ren t  h, say ' h  = $ho 

behavior of the  solutions does not change d r a s t i c a l l y  from one computed 

solut ion t o  another, then one may assume t h a t  t he  behavior of  solutions of 

t h e  difference analog and of the  d i f f e r e n t i a l  equation a re  t h e  same. If the  

behavior does change dras t ica l ly ,  even i f  the  basic  type of behavior doesn't 

change, then one must assume t h a t  the behavior of solut ions o f  the  difference 

analog and of the  d i f f e r e n t i a l  equation a re  d i f f e ren t  and t h e  solution should 

be recomputed w i t h  another value of h. For example, i f  d = 0 i n  equation 

(4)  and we were using the  Crude Euler method t o  compute a solution, we would 

I n  

If the  1 
10 0' 

o r  h = - h 

I 

note t h a t  the  computed solut ion i s  sp i r a l l i ng  outward l i k e  an unstable focus. 

When t h e  solution i s  recomputed w i t h  half  t he  o r i g i n a l  spacing, we s t i l l  see 

t h e  outward s p i r a l  but i t s  r a t e  of  sp i r a l l i ng  out w i l l  be reduced by about 

ha l f ,  leading t o  the conclusion tha t  the '  behavior of t he  d i f f e r e n t i a l  equation 

i s  not t h a t  of an unstable focus. 

A greater  analysis of t he  center of a difference equation i s  i n  

order. Consider the difference equation ( 3 )  where t h e  matrix A i s  a s  given 

i n  (3a). This happens t o  be the matrix A given f o r  t he  cen t r a l  difference 

analog i n  equation (6) w i t h  d = 0 

i n  t h e  form given i n  ( 3 )  and (3a). 

2 
and 2 cos w = 2-h,, but we sha l l  use it 

, 
As noted before, a l l  solutions remain on ' 

2 2 a l e v e l  surface of V(x) = xl-2 cos cu x x + x2. One such l eve l  surface, f o r  1 2  
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w = &/g 

marks on the  e l l i p s e  show the  points of the solut ion s t a r t i n g  a t  

= 1. Since x(9) = x(O), t h i s  solution i s  periodic w i t h  period 9. Any point 

on t h i s  e l l i p s e  can be used a s  the s t a r t i n g  point 

9-periodic solution. 

and xl(0) = x (0) = 1, i s  the  e l l i p s e  shown i n  Figure 6. The t i c -  

xl(0) = x2(0) 

2 

x(0) and w i l l  lead t o  a 

Suppose now t h a t  cu was changed s l igh t ly ,  say from o = %/9 = 

lOrr/45 t o  03 = lm/46. The e l l i p se  V(x) = constant w i l l  change very 

s l i g h t l y  but each solution w i l l  now take on 46 d i s t i n c t  points on the  e l l i p s e  

instead of 9 and we w i l l  have x(46) = x(O), leading us t o  say t h a t  t he  solu- 

t i o n  i s  46-periodic. A change i n  the parameter u) of  ~ / 2 O 7  .0015 changes 

t h e  period by a factor  of 5. I n  fact, i f  w i s  an i r r a t i o n a l  multiple of  T, 

t he re  w i l l  not be any integer k such t h a t  x(k) = x(0) and so t he  solut ion 

i s  not periodic. Yet, each point x(k) of the  solution w i l l  be on the  l e v e l  

surface of V(x) = V(x(0)) and the points x(k) w i l l  move around t h e  e l l i p s e  

i n  t h e  same manner as shown i n  Figure 6. 

Assume t h a t  t he  eigenvalues of  A a r e  eio, and e-.h where 

eiu, # e-iw. Then each solution of ( 3 )  can be wri t ten as i n  (10) 

x(k) = a cos wk + b s i n  uk ( 10) 

where a and b a re  constant 2-vectors which a re  completely determined by 

x(0). Letting k = 0, we get a = x(0). We determine b from the  equat ion ,  

x( 1) = Ax(0). 

x(0) 
(A-cos cu I) 

s i n  w b =  

- i w  Since eiw # e , s in  w # 0 and b is uniquely determined. 



Figure 6 

A Level Surface of V(x) = xl-2cos 2 (2./9)x1x2+ x2 2 



16 

Now, x(k) = x(0) only when cos cuk = 1, i.e., when cuk i s  some 

integer  multiple of 2rr. Then w = %/9, then 901, = 2rr and the  solution is  

9-periodic. When w = lm/46, then 46J = lOrr and the  solut ion i s  46-periodic. 

Notice t h a t ,  in both cases, t he  period k is t he  lowest integer  such t h a t  

x(k) = x(0). When w i s  an i r r a t i o n a l  multiple of 2 , then cuk i s  never 

equal t o  an integer multiple of 2rr and the  solution i s  not periodic. Yet 

equation (10) gives the  formula fo r  a 

say t h a t  t he  solution (lo) i s  2rr/clrperiodic f o r  any w? If we could, then 

t h e  period would be continuous i n  the  parameter 

2rr/c&periodic function. Why can't we 

w (except when 

The problem a r i s e s  because the solution i s  defined only on the  

eiw = e-?. 

integers.  What i s  meant by the  statement, "x i s  T-periodic" when x i s  

defined only on the  integers  and T i s  not an integer? Since x(k+T) i s  

not defined whenever k i s  an integer  and T i s  not, we cannot say x i s  

T-periodic whenever x(k+T) = x(k). 

solut ion of (3) for  a l l  r e a l  k, then we could say x is T-periodic whenever 

x(k+T) = x(k). However, (10) i s  a solution of (3 )  not only f o r  a and b 

constant 2-vectors, but a l so  f o r  a and b any 1-periodic functions, as i n  

I f  we could def ine equation (10) a s  a 

(10'). 

x(k) = a(k)  cos cuk + b(k) s in  cuk ( 10' 1 

It is e a s i l y  confirmed by subs t i tu t ion  t h a t  a and b a r e  no longer determined 

by x(0) but  t h a t  x(k) i s  a rb i t r a ry  for 0 d k < 1. If x(k) i s  defined 

(as i n i t i a l  value) for  0 S k C 1, the  a(k) (hence b(k))  i s  completely deter-  

mined and (10') represents t h e  solution w i t h  the  i n i t i a l  values. 

tha t ,  by def ining the i n i t i a l  values for  the  solution on an in t e rva l  

Notice 

.- .- 
- -- - - __ 



instead of a t  a point, we get t h e  solut ion defined fo r  a l l  r e a l  k instead 

of only on the  integers  and we can log ica l ly  t a l k  about T-periodic solutions 

for non-integer T, I n  (10') the  vector b(k) i s  given i n  terms of  a(k) by 

a( k) 
(A-cos w I) 

s i n  w b(k) = O S k < l .  

Jus t  what does t h i s  "new" de f in i t i on  of a solution mean i n  terms 

Two different  solutions of  (3)  f o r  of  t he  simple difference equation ( 3 ) ?  

u) = 2rr/9 

t o  have a(k) and b(k) constant and the  dotted l i n e  has a(k) and b(k) 

non-constant. 

t i o n s  look the  same and t h a t  both solutions a r e  9-periodic. 

a r e  shown i n  Figure 7. The sol id  l i n e  i s  the  solution which happens 

Notice tha t ,  on t h e  integers  (marked by the  t i c s ) ,  both solu- 
-7 

T h i s  def in i t ion  of a solution o f  a difference equation i s  formalized 

here. 

on only the  integers,  t i s  used as  t he  independent var iable  instead of k. 

The difference equation under consideration i s  given by equation (11) where 

each x and f (  t ,x )  i s  i n  En, an n-dimensional vector space. 

To emphasis t h a t  t he  solution i s  defined on some r e a l  i n t e rva l  and not 

x ( t + l )  = f ( t , x ( t ) )  ( 11) 

DEFINITION: A function x ( t )  = x(t;to,xo) where t and to a r e  r e a l  numbers 

t. s t, c t + T, some T 2 1, and xo i s  a n-vector valued func- 

tiw on 

(11) i f ,  for  some T h 1, 

(I 0 ., 

[0,1), i s  called a solution of the  difference equation 

a )  x ( t )  = xo(t- to)  fo r  to s t < to+ 1 
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x2 

Figure 7 

Two Solutions of x(k+l) = Ax(k) 



b) x ( t + l )  = f ( t , x ( t ) )  f o r  to 6 t < to+ T - 1  . 
The difference between t h i s  def in i t ion  of a solut ion and the  usual def in i t ions  

is t h a t  t he  i n i t i a l  value xo i s  now a function instead of a vector. The 

function xo define0 the  solut ion on the  unit i n t e r v a l  [to,to+ 1) and the 

difference equation (11) i s  used t o  extend t h i s  de f in i t i on  t o  the  r i g h t .  

Notice t h a t  t he  solution is  defined f o r  a l l  r e a l  t i n  t h e  in t e rva l  

[to,to+ T)  instead of r e s t r i c t i n g  t-to t o  be an integer.  Notice a l so  t h a t  

t h e  solut ion space, which i s  f i n i t e  dimensional when the  solution i s  defined 

only on the  integers, i s  now i n f i n i t e  dimensional. An i n i t i a l  function must 

be defined instead of an i n i t i a l  point. 

For any r e a l  number t, the in teger -par t  6f t, [t], i s  t h e  la rges t  
~ 

integer  n S t. The f r ac t iona l  par t  of t, ( t ) ,  i s  given by the  formula 

( t )  = t-[t]. Thus, as examples, [3.14] = 3, (3.14) = .14, 1-1.621 = -2, 

(-1.62) = .38, EO] = 0, and (0) = 0. Let R be  t h e  r e a l  l ine,  R' be the 

pos i t ive  r e a l  half-l ine,  and be an n-dimensional normed vector space. 

For each vector x E E", denote the  norm of x by 1x1. The most common 

norm used here w i l l  be the  Euclidean norm 1 XI = ( x * x ) ~  (x* denotes the  

complex conjugate transpose of 

E" 

1 

*. 

x) but discussion w i l l  not necessar i ly  be 

l imited t o  t h i s  norm. 

+ n For any function x mapping R ( o r  R ) i n t o  E , l e t  xt be the  

funct ion defined by ~ ~ ( 6 )  s x(t+6) fo r  0 5 6 < 1. Let XI be a Banach 

space of  n-vector valued functions defined on [0,1). For each xt E X1, 

denote the  norm of x by IIxtll. The usual space fo r  X1 w i l l  be $[ 0, l), t 
but  discussion w i l l  not necessar i ly  be limited t o  t h i s  space. 

Let E be the operator defined by Ex(t) = x ( t + l ) .  Then the  

d i f fe rence  equation (11) can be writ ten i n  the  somewhat shorter notation of 



(11'). The arguments on x and Ex a re  understood t o  be t. 

i 

Ex = f ( t , x )  ( 11' 1 

PROOF: The solut ion ex i s t s  and i s  unique f o r  

to S t < to+ 1 (defined by the  i n i t i a l  function xto). For each integer  

N > 0, assume t h a t  the  solut ion x ( t )  exis ts ,  i s  unique and i s  i n  G(t) 

The proof i s  by induction. 

. .  
THEOREM 1 On existence and uniqueness of  solutions.  Suppose to and an 

x E x1 are given. I f  there  a re  open, possibly unbounded, sets 

G(t) C En f o r  all t h to such t h a t  f ( t , x )  E G(t+l)  

x E G(t), all t h to and xt ( 8 )  E G(to+8) f o r  0 d 8 < 1, 

then the  solut ion e x i s t s  f o r  a l l  t P t 

If f ( t , x )  i s  s ingle  .valued, t he  solut ion i s  unique. 

t0  

f o r  a l l  

0 

O 0  x ( t )  = x(t; to,xto) 

to+ N - 1  d t C to+ N.?. By induction, the solut ion exists and i s  unique f o r  a l l  

t to. 

It should be noted here t h a t  existence comes from the  assumption 

t h a t  f ( t , x )  E G(t+l )  f o r  a l l  x E G(t) and uniqueness comes from the  

( t r i v i a l ? )  assumption t h a t  f ( t , x )  i s  s ingle  valued f o r  a l l  x E G(t). The 

s e t s  G(t) a r e  open and possibly unbounded. The most common s e t s  used i n  

t h i s  work a re  G(t) = En fo r  a l l  t h to, but discussion i s  not necessar i ly  

l imi t ed  t o  these se t s .  

t h i s  theorem. Note a l so  t h a t  the  theorem holds f o r  each x which satisfies 

t h e  conditions and i s  not limited t o  a spec i f ic  given 

The f a c t  t h a t  the s e t s  a re  open play no v i t a l  ro l e  i n  

t0 

Xt,  * 

__- 
~ 
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For the  function f ( t ,x ) ,  l e t  f t(y),  where y i s  any function 

from [0,1) i n to  En, be the  function defined by 

The following three  theorems each show t h a t  xt€ X1 under proper 

conditions on xto and f f o r  th ree  d i f f e ren t  choices of the space X1. 

The statements of t he  theorems and t h e i r  proofs a r e  almost ident ical .  

difference i n  these proofs, and the  d i f f i c u l t y  f o r  a general Banach function 

space, i s  the proof that,  i f  x t  E XI and x to+l  E Xl, then x 0 X1 f o r  

to S t 6 to+l. 

s a t i s f i e s  a cer ta in  boundary condition. 

The . 

0 t 
I n  Theorem 2a, fo r  example, t h i s  i s  not t r u e  unless xto 

THEOREM 2a If, i n  addition t o  the assumptions of Theorem 1, the  space 

i s  the  space of a l l  continuous functions C[O,1) 

norm, f (y) E C [ O , l )  f o r  each y E C[O,1) such t h a t .  

y(8) E: G(t+8), 0 5 8 < 1, and each t 2 to, and the  i n i t i a l  func- 

t i o n  x i s  i n  C[O, 1) and s a t i s f i e s  t he  boundary condition 

X1 
w i t h  t he  uniform 

t 

t0 

then the  solution x ( t )  = x(t;to,xto) 

each t 2 to. 

s a t i s f i e s  xtE C[O, l )  f o r  

PROOF: The boundary condition on xto insures t h a t  t h e  solution x ( t )  is 

continuous a t  t = t +I. Since x to t l  = f to(xto)  i s  i n  c [ o , ~ ) ,  the  solution 

i s  continuous f o r  to S_ t < to+ 2, i.e., X ~ E  c[0,1) f o r  to B t to+l. 
0 
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If xt€ C[O,1) fo r  to d t < to+N, then, using the  f a c t  t h a t  

i s  i n  C[O, l )  whenever x-~€_ CLO,l),-we get t h a t  xt€ C[O,l) 
t+l = f t ( x t )  - -  

X 

for  t B t < t o + N + l ,  and the  theorem i s  proven by induction. 
0 

THEOREM 2b If, 

i s  the space of a l l  p-th power integrable  functions 

with the  usual norm, some 

y E L [0,1) such t h a t  y(8) E G(t+8), 0 8 < 1, and each t 3 to, 

and xt E L [0,1), then the  solut ion x ( t )  = x(t;to,xto) s a t i s f i e  

xte L [0,1) fo r  each t E to. 

i n  addition t o  the  assumptions of Theorem 1, the  space X1 
Lp[O,l) 

p 2 1, ft(y) E L [0,1) for  each 
P 

P 

O P  

P 

PROOF: We have x E L [ 0,l) and x to+ l  = f to(xto)  E Lp[o, 1) . Then, for ' 
to P 

any t, to t < to+l, 

and hence xtE L [O, 1) f o r  to L t < t +l. 

P 
i s  i n  Lp[O,l) 

P 0 

P 0. 

If xt€ L [0,1) f o r  to 5 t < to+N, then, using the  f a c t  t h a t  

X t+l = ft(xt)  

xt€ L [O, 1) 

whenever xt€ L [0,1), we get t h a t  
P 

for  to 5 t < t + N + 1  and the  theorem i s  proven by induction. 

Krasnosel'skii [83 gives a necessary and su f f i c i en t  condition f o r  

f t (y)  t o  be i n  L [O, 1) f o r  a l l  y i n  L [0,1) such t h a t  y(Q)€.G(t+8), 
P P 

0 5 8 < 1. 

i f  and only i f  there  ex i s t s  a non-negative valued function 

with I < 00, and a non-negative constant b such t h a t  

T h i s  condition is given here without proof, f t(y) i s  i n  Lp[O,l) 

a(8), 0 5 8 < 1, 
1 
0 
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f o r  a l l  

where G(t+B) i s  unbounded because, while any l i nea r  function of ' x  satis- 

f i e s  it, there  a re  large c lasses  of non-linear functions of x which do not. 

x E G(t+0), 0 Z; 8 < 1. T h i s  condition i s  in t e re s t ing  f o r  t he  case II 
For the  case where G(t+8) i s  bounded for  a l l  0, 0 d 8 < 1, t h i s  condition 

reduces t o  the  condition t h a t  I f(t+8,x)l  be bounded f o r  a l l  x E G(t+8), 

0 6 8 < 1 .  

THEOREM 2c If ,  i n  addition t o  the  assumptions of Theorem 1, the  space X1 i s  

the  space of a l l  functions of bounded var ia t ion  BV[O,l) with 

the  usual norm, f t (y)  E BV[O,l) for  each y i n  BV[O,l)  such 

t h a t  y(8) E G(t+8), 0 S 8 e 1, each t 2 t and x E BV[O,l), . 

then t h e  solution x ( t )  = x(t;to,xt,) s a t i s f i e s  xt€ BV[O,l) for 

each t 1 toe 

0' t 0  

PROOF: Let V(tl,t2) be the  var ia t ion  of  the  solution x on t h e  in t e rva l  
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and xt€ BV[O,l)  f o r  to 5 t < to+l since xt and xt +1 are  i n  BV[O,l). 
0 0 

I f  xt€ BV[O,l) f o r  to 5 t < to+N,  then, using the f a c t  t h a t  

Xt+l= f t ( X t )  

for  t S t < t o + N + l  and t h e  theorem i s  proven by induction. 

is i n  BV[O,l)  whenever xte BV[O,l), we get t h a t  Xtc BV[O,l) 

0 

The solution x ( t ) ,  while writ ten as a function of t,to,xto, 

r e a l l y  depends only on t,to+ (t - to)  and xt ( ( t - to ) ) .  Since t = 

to+ ( t - t o )  + n where n = [t-to] i s  an integer, t he  value of the  solut ion 

a t  to+ ( t - to )  determines the  solution a t  to+ (t-to) + k for  k = 0,1,2, 

0 

... ,n, and thus determines t h e  solution a t  t. 

THEOREM 3 If f ( t , x )  i s  a continuous function of  x fo r  a l l  x E G(t) 

and a l l  t B to 

solution x ( t )  = x ( t ; t  x ) i s  a continuous function o f  

and the  assumptions of Theorem 1 hold, then the  

0' to 

xto( (t-t,) 1 

PROOF: If 

continuous i n  xto( ( t - t o ) )  . 
to 5 t < to+l, then x ( t )  = xto( (t-to)) and t h i s  i s  obviously 

Now x ( t + l )  = f ( t , x ( t ) ) ,  a continuous function of  a continuous 

function, i s  also continuous i n  

by induction fo r  a l l  

xt ( ( t - t o ) ) .  Thus, t he  theorem is proven 
0 

t B to* 

THEOREM 4 Under the  conditions of Theorem 1 and 2b, t he  solution xt con- 

sidered a s  a function of  x i s  a continuous function of  the  

i n i t i a l  data. 
t0 

The proof of t h i s  theorem i s  very d i f f i c u l t  and it is given on pages 

20-26 of Krasnosel' s k i i  [ 83 

I n  looking fo r  periodic solutions of a difference equation, it would 
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be nice t o  be able t o  use only continuous functions, i.e.,  functions which a re  

continuous i n  t. However, the  following example i l l u s t r a t e s  t h a t  t h i s  i s  not 

always possible. 

For x( t) a r e a l  number, consider t he  difference equation (12). 

One solut ion of (12) i s  the  function x( t )  given by (12’) 

(=‘I 
/- 

and x(t+2) = x ( t ) .  T h i s  solution i s  2-periodic so there  ex i s t s  a non- t r iv ia l  

2-periodic solution of (12). However, t h i s  solution i s  not continuous i n  t. 

Assume t h a t  there  i s  a non-tr ivial  2-periodic solution of (12) which 

i s  continuous i n  t. Then there  i s  a tl such t h a t  x(t,) > 0 and x( t l+l)  < 

0. Since x i s  continuous there  is a t2 such t h a t  tl < t2 < t +1,x(t2) = 0, 1 
and 0 C x(t2-E) < 1.. f o r  some E > 0. Then x(t2-€+2) = -x(t2-E+1) 1/3 

(x(t2-€))’/’ > x(t2-E). This  i s  a contradiction since x i s  2-periodic, i.e., 

x(tg-€+2) = x(t2-E). 

be discontinuous i n  t. 

Thus, any non-tr ivial  2-periodic solution of (12) must 

I 

I 
I 

i 
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LINEAR DIFFERENCE EQUATIONS 

A - l inear  difference equation i s  an equation of  the form (13) where 

A(t) i s  an n by n matrix ( r e a l  o r  complex). 

, Ex = A(t)x (13) 

This equation i s  cal led l inear  because solutions of (13) obey the  superposition 

rule .  

LEMMA 1 Superposition rule .  If xl( t )  and x2(t)  a r e  any two solut ions of 

( l3 ) ,  then x ( t )  = a l ( t )x l ( t )  + a2( t )x2( t )  is also a solut ion for any 

sca la rs  a a which a re  1-periodic. 1' 2 

PROOF: A( t )  x( t )  = al( t )A( t )  xl( t )  + %( t)A( t )  x2( t )  

= al( t+l)Xl( t + l )  + a*( t+l)x2( t + l )  = x( t + l ) ,  

I n  l inear  difference equations 1-periodic sca la rs  play a ro l e  very 

analogous t o  t h a t  played by constants i n  l inear  d i f f e r e n t i a l  equations. Thus, 

t h e  s e t  of functions xl(t),x2( t ) ,  * .  .,5( t )  a r e  s a i d  t o  be l i nea r ly  dependent 

a t  t -- over the integers  i f  there  ex is t  sca la rs  a1,a2, ...,%, not a l l  zeroo 

such t h a t  

- 

, 

i den t i ca l ly  'for a l l  in tegers  m. Clearly, these sca l a r s  al,a2,. . . ,% a re  

functions of t and can be chosen t o  be 1-periodic i n  t. If the  functions 

xl( t) ,x2( t ) ,  . . . , %( t) are  l i nea r ly  dependent a t  t over the  integers  fo r  a l l  
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t, then they a re  said t o  be l inear ly  dependent over t he  integers  o r  merely -- 
l i nea r ly  dependent. Repeating, the  functions xl(t),x2(t), e e,%(%) a re  

l i nea r ly  dependent (over the integers) i f  there  e x i s t s  1-periodic sca la r  func- 

t i ons  al( t),a2( t), . . . ,c@ t) such tha t  . .  

and 

The functions 

periodic sca la rs  sa t i s fy ing  t h i s  equation a re  a l l  i den t i ca l ly  zero. The fact 

t h a t  t h e  sca la rs  al( t ) , a2( t ) ,  . . .,%(t) must be 1-periodic is  important. If 
each x,(t) 

s a t i s f y  t h i s  equation but they may not  be 1-periodic. 

xl( t),x2( t), . . . ,xN( t )  a r e  l i nea r ly  dependent i f  the  only 1- 

i s  i n  E" and N Z n+1, then there  always a r e  sca la rs  which 

The following Lemmas are  not new with t h i s  paper but a r e  included 

here for completeness. 

LEMMA 2 Linear dependence of solutions -- Any n + l  solutions xl(t),x2(t), 

. . .,x (t) defined for  t Z to of (13) a r e  l i nea r ly  dependent on n+l 

and 

I 
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i den t i ca l ly  i n  t on t h i s  i n t e rva l  ( t  5 t < to+l). T h i s  i s  because, for  

each 

n + l  n-vectors. Operating on t h i s  equation w i t h  A(t), we get 

0 

t, t h i s  equation i s  the  relat ionship depic-ting-t-he l inear  dependence of _- 
~ ~ ~- 

If we extend %(t) 

have a s e t  of 1-periodic sca la rs  which s a t i s f y  t h e  condition fo r  l inear  depen- 

dence. 

t o  the  r i g h t  by l e t t i n g  %(t+l) = %(t), we see t h a t  we 

LEMMA 3 I f  there  a r e  n l i nea r ly  independent solut ions of (13) xl(t),x2(t), 

..., x ( t)  defined fo r  t 1 to, then every solution x ( t )  fo r  

t 2 to' can be upiquely expressed as t h e  sum 
n 

where each %(t )  i s  a 1-periodic scalar. 

PROOF: For each t i n  the  in t e rva l  to S t < to+l, there  ex i s t s  sca la rs  

al( t),a2( t), . . .,en( t) which s a t i s f y  (14). These sca la rs  a r e  uniquely defined. 

If we extend these sca la rs  t o  the  r ight  by using the  r e l a t ion  %(t+l) = a#), 

then t h e  right-hand side of (14) represents a solution t o  (13) which agrees 

with x ( t )  on to 5 t c to+l. Since the solution with t h i s  i n i t i a l  function 

i s  unique, we must have equation (14) holding fo r  all t Z to. 

If we l e t  X ( t )  be the  matrix formed by the  l inear ly  independent . 



y ( t )  be the  vector w i t h  elements %(t) ( % ( t )  i s  t h e  k-th element of y ( t ) ) ,  

then y ( t + l )  = ' y ( t )  and equation (14) can be rewri t ten a s  (14'). 

The matrix X( t) 

the  matrix equation X(t+l) = A(t)X(t) .  If X(t) = I, the  uni t  matrix, fo r  

to B t < to+l, then 

wr i t ten  X(t,to). 

i s  cal led a fundamental matrix solution of  (13) and s a t i s f i e s  

X(t) i s  the  pr incipal  matrix solution of (13) and i s  

We note tha t ,  wi th  the pr inc ipa l  matrix solution, t he  func- 

t i o n  y ( t )  i n  (141) becomes t h e  i n i t i a l  function xt,((t-to)) and hence the  

i/Bolution x ( t )  can be wri t ten a s  (14"). 
I 
I 

LEMMA 4 Existence of n l i nea r ly  independent solutions -- If det(A(t))  # 0 

f o r  a l l  t L to, then there  ex i s t s  n l i nea r ly  independent solutions 

of  (13) f o r  t 2 to. 

PROOF: Let X(t) be a matrix solution of (13) such t h a t  det(X(t))  f 0 f o r  

t 5 t < to+l. Then, since de t (X( t+l ) )  = det(A(t)X(t))  = det(A(t))det(X(t)) ,  

we get  by induction t h a t  det(X(t))  f 0 f o r  a l l  t Z to. The colbans of X ( t )  
0 

. thus represent  n l i nea r ly  independent solutions of ( 13). 

. I n  everything t h a t  follows, I assume t h a t  

and hence t h a t  Lemma 4 holds. 

de%(A(t)) f 0 fo r  a l l  
/--/ 

t 2 to 

Since X ( t )  i s  non-singular for- a l l  t 2 to, X-'(t) must ex is t  for  

.- 

I 

l -  
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a l l  t. From the  iden t i ty  X”(t)X(t) = I, we get  t h a t  

X - l (  t + l ) X (  t + l )  = X-’( t+l)A( t)X( t )  = X - l (  t)A( t )  

and, since X( t )  i s  non-singular, X-’( t )  s a t i s f i e s  t h e  difference equation 

( 15) 

X-’( t )  = X-’( t+l)A( t )  (15) 

For z( t )  

cal led the  adjoint  t o  (13). 

a row vector ( a  1 by n matirix), t he  difference equation (15’) i s  

z ( t )  = z( t+l)A(t)  o r  z ( t + l )  = z(t)A-’(t) ( 15’ 1 

A fundamental matrix solution of  (15’) i s  the inverse of  some fundamental matrii 

Solution of  (13). .In par t icular ,  t h e  p r inc ipa l  matrix solution of  (15’) is t h e  

inverse of  the  pr inc ipa l  matrix solution of (13). 

For each vector norm I X I ,  def ine the  norm of  a matrix M by 14. 

This matrix norm s a t i s f i e s  a l l  the  usual propert ies  of  a norm [6]. 

( i )  I M I  L 0 fo r  a l l  M and 1Ml = 0 only when M = 0. 

a ~ l  = la1 ] M I  fo r  any sca la r  a 
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Boundedness of the Principal Matrix Solution -- Let 

t h a t  IA(t)l S a ( t )  fo r  a l l  t h to and r ( t , t o )  be defined by 

a ( t )  be such 

e( t , to)  = 1, t 5 t < to+l 
0 

t-tol 
e( t , to)  = TI a ( t - j )  for  t 2 to+L 

j =1 

PROOF: The proof w i l l  proceed by induction. Since X(t,to) = I for  

t 

t h a t  t he  inequal i ty  

d t < t +1, we get t h a t  I X( t , to) l  = 1 = k(t, t ) on t h i s  interval .  Assthe 
0 0 0 

IX(t,to)l 5 t( t , t , )  holds for  to t < SI some S 2 to+l* 

Then, s ince X( t, to)  s a t i s f i e s  the  difference equation X( t+ l , t o )  = 

A(t)X(t,to), we get  

for a l l  

it i s  t r u e  f o r  t B t < s+l  and, by induction, is t r u e  fo r  all t 1 to. 

t, to L t <.s. Thus, i f  t he  inequal i ty  i s  t r u e  f o r  to d t < s, then 

0 

C O R O L L ~ Y  I f  a ( t )  S a for  all t 2 t then E(t,to) a t-tOIS k( a ) a  t-to 
0’ 

-1 . .  
where k(a) = 1 i f  a 2 1 and k(a) = a i f  a < 1. 

Since [t-to] = t-to - ( t - to) ,  



i 
i 

.. 

If a 1, a -(t-tO) d 1 = k(a). If a < 1, a -(t-to) S aol = k(a) and the  

coro l la ry  is proven. 

flEMMA 5’ On Boundedness of the  inverse of t he  pr inc ipa l  matrix solution -- 
Let a,(t) be such t h a t  IA’l(t)l d a,(%) for all t L to and 

El( t, to )  be defined by 

tl(t,to) = 1 for to S t < to+l 

C O R O ~ Y  If a,(t) s a1 f o r  a l l  t Z to, then 

-1 if a1 < 1. = al where k(al) = 1 i f  a1 Z 1 and k(al) 

The proofs a re  almost ident ica l  t o  the  proofs fo r  Lemma 5 and i t s  

corol lary.  

Notice that,  under the  conditions of  t h e  corol lar ies ,  the  pr inc ipa l  

matrix solut ion (and hence any solution) and i t s  inverse a re  both bounded above 

by am exponential. If, i n  t h e  corol lary t o  Lemma 5, a < 1, then all Solutions 

approach zero exponentially as t --)eo . 
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LINEAR AUTONOMOUS DIFFERENCE EQUATIONS 

A l inear  autonomous difference equation is  of the  form (13' ) where 

A is some constant n by n matrix ( r e a l  'or complex) . 

EX = AX (13') 

I n  order t o  completely characterize the solutions of  (13) we w i l l  need the  

following notation. 

'For any matrix B and some integer k 2 0, Null (B)k' i s  the s e t  ' 

k of a l l  vectors x such t h a t  B x = 0. Null (B)k forms a l i nea r  subspace of  

X. The d i s t i n c t  complex numbers Xl, X2,. . . , X such t h a t  Null(A-XiI) con- 1 
r 

t a i n s  non-zero elements a re  cal led the eigenvalues of  A. 

value Xi of A there  i s  associated an integer  m. 1 1 which i s  the  smallest 

With each eigen- 
I 
I 

- 1  m i + l  . in teger  such t h a t  Null(A-l.iI)mi = N U l l ( A - l . i I )  The s e t  of  a l l  non-zero ' 

vectors  x i n  N u ~ ~ ( A - X ~ I ) ~ ~  a r e  called the  generalized eigenvectors of A 

corresponding t o  the  eigenvalue Xi. It can be proven [4, Theorem 2 on page 

1U-1143 t h a t  any n-vector x can be wri t ten uniquely as the  6Um 

r 

k-1 
x = c  Xk 

where each Null(A-$I) mk . 
For each integer  n, the  f a c t o r i a l  polynomial of degree n, wri t ten 

t(n), is defined by 
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The f a c t o r i a l  polynomial s a t i s f i e s  the very useful  equal i ty  151 

Any complex number X f 0 can be wri t ten as X = reio f o r  some 

r e a l  r > 0 and r e a l  a. For r e a l  t, we can define t h e  exponential function 

i(onmk)t, and we Xt t o  be X = r e . However, we can also wri te  X = r e  t t i& 

have a d i f f e ren t  def in i t ion  for  k fo r  each integer  k. However, noting 

t h a t  e '&kt i s  1-periodic f o r  every integer  k, we can chose .a such t h a t  

- 7 ~  < o 5.r and absorb a l l  t he  other  def in i t ions  in to  an a rb i t r a ry  1-periodic 

coeff ic ient .  

X 

With t h e  knowledge t h a t  there  a re  many possible def in i t ions  of  
t but t h a t  t h e i r  differences can be absorbed by a 1-periodic coefficient,  we 

w i l l  use t he  def in i t ion  t h a t  X = r e where -TT < o S T i n  a l l  of t he  

following. 

IEMMA 6 Linear independence of t he  f a c t o r i a l  polynomials -- The f a c t o r i a l  

polynomials t ( k) , k = 0,1,2,. . , a re  l i nea r ly  independent over 

[to,to+s) where s i s  any number, s > 1. 

PROOF: The proof w i l l  proceed by induction. t (O) = 1 by defini t ion,  and 

# hence t (O) by i t s e l f  i s  l i nea r ly  independent. Assume now t h a t  t (0) , 
(n-1) ,(n) 

9 0 . .  # t(n-l) a r e  l i nea r ly  independent but t h a t  t (O) , t ( l ) , . . . , t  

l i n e a r l y  dependent fo r  some integer  n B 1. Then we can wri te  

where each %( t )  i s  1-periodic. Then 



Thus, w e  get t h a t  

This is possible only i f  %( t )  = 0, k ,= 0,1,2, . .,n-2, and an 1( t)(n-1) = n, 

i. e., 

- 

From t h e  def in i t ion  of t he  f a c t o r i a l  polynomials, we get 

Hence an , ( t)  a s  above i s  not possible and we have a contradiction. Thus, - 
, I... t h e  s e t  t (O) , t ( l ) , .o . , t (n)  i s  l inear ly  independent whenever t (0) , t o )  

t(n-l) is. The lemma i s  proven by induction. 
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LJ3MMA 6' Linear independence of t h e  exponential functions -- If  kl, X2,. . ., . 

a re  r d i s t i n c t  scalars  (complex numbers), none of which a re  'r 
zero, then the  exponential functions hl, t t  k2,. . . , Xt a r e  l i nea r ly  

r .  
independent. 

PROOF: Let al(t),a2( t ) ,  . . .,a ( t )  be 1-periodic functions such tha t  r 

Then, subs t i tu t ing  t+j f o r  t, we  get 

The determinant of  t he  coef f ic ien ts  on the  ~4~'s i s  W(t), 

W(t) = det  

t t  t = X1$...kr de t  

. . . !y-l k;+r-l . a .  't+r-l 

1 1 . e .  1 

x2 . e .  x '1 r 
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r- 1 
Let therebe constants Bo,f3,, . .,8r,l such t h a t  p(X) = QEoPkXk s a t i s f i e s  

P(AJ = P(X22) = ... = p(Xr) = 0. T h i s  p(X) i s  a polynomial i n  X of degree 

less than r which has a t  l e a s t  r roots.  The only possible polynomial w i t h  

t h i s  property i s  the zero polynomial, i .e . ,  Bo = B1 = ... = Pr-l = 0. 

i n  t u r n  says t h a t  t he  rows of  the  l a s t  determinant above a re  l i nea r ly  indepen- 

This 

dent and hencethat determinant i s  non-zero. Since none of the  \ 's are 

zero, each factor  $ i n  W ( t )  i s  non-zero, and so W ( t )  f 0 fo r  a l l  t. 

Since W(t) # 0 f o r  a l l  t, the  only possible solution of the  equa- 

t i ons  f o r  the  %'s i s  a,-(t) = a 2 ( t )  = ... = a r ( t )  = 0 f o r  a l l  t, and t h e  

exponential functions Xt ,  LE,. . . ,at a r e  l i n e a r l y  independent. . r 

Suppose now t h a t  A has only one eigenvalue X f 0 and t h a t  ml = m 

( o r  t h a t  we r e s t r i c t  our a t t en t ion  t o  t he  space 

non-lmival solution of the  equation 

form x ( t )  = xoX . However, t h i s  i s  only one of t he  m l i nea r ly  independent 

solut ions which ex is t .  x 's 
0 

which s a t i s f y  the equation (A-hI)x0 = 0, i n  general there  w i l l  not be m of 

them. form a l inear l j r '  

independent s e t  on [to,=), t r y  the  solution x( t )  

N u ~ ~ ( A - X I ) ~ ) .  If xo i s  a 

(A-XI)xo = 0, then one solution i s  of the  

t 

men i f  there were several  l i nea r ly  independent 

Since the  f a c t o r i a l  polynomials t (0) , t(l) 9 t(2),..., 

where each xk i s  a constant vector. Then 

t +1 a, 

x(t+l)-Ax(t) = ($- -0 ( t+l)(k)xk)A - ( q = o t ' k ' A x Q A t  



From the  requirement t h a t  x(t+l)-Ax(t) = 0 f o r  all t, we get t h a t  xo is 

a rb i t r a ry  i n  Null( A-AI)m and 

f o r  k = 0,1,2,. . . . By repeatedly applying t h i s  ident i ty ,  we get t h a t  

k 
( A - M )  xo. 1 

k! Xk 
Xk = - 

Since x0e N u ~ ~ ( A - A I ) ~ ,  we see t h a t  xk = 0 f o r  a l l  k h m. 

f o r  x ( t )  

Thus, t h e  sum 

has only a f i n i t e  number of non-zero terms and there  i s  no worry 

about convergence. The solut ion i s  

f o r  any xo€ Null (A-XI)m. 

t he  e x g n e n t i a l  function Xt and i s  a l i nea r  function of x 

Note t h a t  t h i s  solution i s  a polynomial i n  t timer 

0.  

I n  the  more general case where A has the  r d i s t i n c t  eigenvalues 

l i nea r ly  independent solut ions i n  the  following X1, X2,. . . , Xr, we can find 

manner. Pick n l i n e a r l y  independent vectors x1,x2,. . .,x such t h a t  each 

5 is i n  one of the  spaces Null (A-XJI)mj, j = 1,2,.**,r. T h i s  can always 

be done [4]. If xk€ Null (A-A I)mJ, f o r m  the  solution xk(t)  i n  (17) using 

the  so lu t ion  i n  (16). 

n 

n 

3 
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%(t)  = x(t;X. J' x k ) f o r  k = 1,2,.. .,n ( 17) 

LEMMA 7 The n solutions (17) are  l inear ly  independent. 

Let x ( t )  be t he  solut ion O f  (13') with t h e  i n i t i a l  condition 

xo(t)  t x ( t )  f o r  o S t < 1. Write 

where x,(t) E Null (A-\I)mk f o r  each k. Then the  solution x ( t )  i s  of 

t h e  form (18) using the  solutions i n  (16). 

Thus, any solution can be expressed as  a l inear  combination of solutions of  

t h e  form of (16), i.e., a s  a l inear  combination of  exponential functions times 

f a c t o r i a l  polynomials. 

The behavior of each solution (16) deje-nds-sn the  eigenvalue Xi - _ ~ _ _  - 

under consideration. If I kil > 1, then the  solution (16) grows exponentially 

a s  t 3 ~ .  Equation (16) can be used as t he  de f in i t i on  of a solution f o r  a l l  

t, and we see t h a t  the  solut ion approaches zero exponentially as 

Let  X1 be the  subspace of X corresponding t o  a l l  t h e  eigenvalues Xi which ' 

s a t i s f y  I Xil > 1. Then any solution which starts i n  X (i.e.,  

for 0 S 8 < 1) remains i n  X1 

so lu t ion  i n  X1 which i s  bounded fo r  a l l  t i n  (-m,-) i s  the  t r i v i a l  solu- 

t + - m  . 

1 

The only 

Xto(Q)E x 1 

and grows exponentially a s  t -)m. 

t i o n  x ( t )  = 0. 

If I Ail < 1, then the  solution (16) approaches zero exponentially 
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as  t and grows exponentially as t 3 - 0 0 .  Let 3 be the  subspace of 

X corresponding t o  a l l  t he  eigenvalues Xi which s a t i s f y  IXil  < 1. Then 

any solution which starts i n  X (i. e., xto(e) E X2 fo r  0 d 8 < 1) remains 

in 'X and approaches zero exponentially as t +m. The only solution i n  

3 which i s  bounded fo r  a l l  t i n  (-m,m) x ( t )  = 0. 

I X.1 = 1, then the  behavior of the  solution depends on the  values 

2 

2 

i s  the  t r i v i a l  solut ion 

If 

k 
.1 

of (A-XiI) xo i n  equation (16). If xo i s . such  t h a t  (A-hiI)xo = 0, then 

the  solution i s  bounded f o r  a l l  t and is, i n  fact ,  periodic. Suppose 

Xi - e Then the  solut ion (16) i s  given by fo r  some 0, 0 < u) 5 1. 

i2rrurtx 
0 

x(t)  = e 

which i s  (l/u))-periodic. 

function, e 

per iodic  w i t h  period l./(wk). 

per iodic  (m integer,m # 0), t h e  s e t  S of periods f o r  solutions of (13) i s  

But, since e imkt, k an integer, i s  a 1-periodic 

x ( t )  = e i2rr(co+k)tx is a lso  a solut ion of (U), and it i s  

Since each T-periodic function i s  a l so  mT- 

i2rrkt 
0 

= (m/(wk); m # 0, all k). T h i s  se t  So is dense i n  the  r e a l  l ine,  i n  

contrast  t o  t h e  case i n  d i f f e r e n t i a l  equations where 

of  per iodic  solutions of 

points. 

Sa ( the  s e t  of periods 

2 = Ax) consis ts  of a countable s e t  of d i s t i n c t  

If lXil = 1 and xo i s  such t h a t  (A-XiI)mxo = 0 but (A-XiI)xo'f 

0, then t h e  solution (16) grows l i k e  a power of t a s  t + w .  The only 

bounded solution is t h e  t r i v i a l  solution x(t) = 0. 
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AFFINE DIFFERENCE EQUATIONS 

An af f ine  difference equation i s  an equation of the  form of (19) 

(19) 
. .  

EX = A(t)x + f ( t )  

where A(t)  is an n by n matrix and f ( t )  i s  an n-vector, Associated with 

each a f f ine  difference equation (19) i s  a corresponding l i nea r  difference equa- 

t i o n  (13). 

EX = A(t)x (13) 

Let X(t,to) be the  p r inc ipa l  matrix solution o f  (13) and make t h e  change of 

var iab les  (20). 

Then 

x ( t + l )  = x( t+l, to)y( t + l )  

= ACt)X(t,tJY(t) + f ( t )  

= X(t+l , to)y( t )  + f ( t )  

and so'we get t h a t  y ( t )  must s a t i s f y  the difference equation 

y ( t + l )  = y ( t )  + x- l ( t+ l , t o ) f ( t )  

For to d t < to+l, we have X(t,to) = I and SO y( t )  = xto( ( t - to) )*  
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The solution f o r  y ( t )  is, f o r  t 2 to+l, 

and the  solution x ( t )  is given by (21).  

__ /------- 
Equation (21) is called the  var ia t ion  of constants formula f o r  (19). - 

Another form f o r  the  var ia t ion of constapts formula can be obtained 

‘by a repeated application of equation (19). 

X ( t )  = A(t-l)x(t-1) + f(t-1) 

= A(t-l)A(t-z)x(t-z) + A(t- l ) f ( t -2)  + f ( t -1 )  

- - ... 
= A(t-1) ... A(t-n)x(t-n) + f ( t -1)  + A(t- l ) f ( t -2)  

+ A(t-l)A(t-2)f(t-3)+. . .+A(t-l).,.A(t-n+l)f(t-n) . 

If weslet  n t [t-to], then t -n  = to+( t - to)  and 

%-to’] 
x ( t )  = X(t,to)xt ( ( t - t o ) )  + c X(t,to+j)f(to+(t-to)+j=l) 

0 j =1 

This equation i s  more informative of the nature of the  coef f ic ien ts  on 

and f i n  t he  var ia t ion  of constants formula. 

x t  0 

Let xo(t)  be the  solution of (19) wi th  zero i n i t i a l  function. Ther 

x t , ( ( t ~ t , ) )  = 0 fo r  a l l  t and, f o r  t 2 to+l, 



43 

We see t h a t  xo i s  a l i nea r  function of the  function f. Let xl(x) = 

K ( t i %  ) 
1 be t h e  solut ion of t he  homogeneous equation (33) with i n i t i a l  value 

0 

Then x1 i s  a l inea r  function of the  function 5 and the  solut ion 
%O* 0 

x ( t )  I n  (21) can be rewri t ten as  i n  (21'). . 

(21' 1 x ( t )  = x 1 (t ;xt  ) + XO(tjf)  
0 

Then 

(xO( t ; f ) J  = 

s 

c x( t, t ,+j)f(  to+ t-to +J-l)l 
j =1 

Hence, xo i s  a continuous l i n e a r  function of f. Thus there  ex i s t s  a matrix 

valued function p ( t , s )  such t h a t  each element, considered as a fhnction of 8 

(holding t fixed),  i s  of bounded var ia t ion on [t,,t] and such t h a t  

See [ 73, f o r  example. . .  

. 
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BOUNDED S O ~ L O N S  -- NONCRITICAL CASE 

Suppose that ,  i n  equation (lg), where A is  a constant matrix, 

EX = A X  + f ( t )  ( 19) 

t he  function f ( t )  i s  defined f o r  all t i n  (-a,=) and i s  bounded fo r  a l l  

t i n  (-oo,a). Under what conditions i s  there  a bounded solut ion x ( t )  of 

(19) ? 
n n 

Let I XI be any vector norm f o r  x E E A function f: (-W,OO) -B E 

i s  sa id  t o  be bounded it there  i s  some number F E 0 such t h a t  I f ( t ) l  S F 

f o r  a l l  t i n  (-oo,m), Let B be the s e t  of a l l  bounded functions and define 

addition and sca la r  mult ipl icat ion on elements of  B i n  the  usual sense, For 

each f E B, l e t  

With t h i s  norm, B becomes a Banach space. 

fiEMMA 8 Let (un) be a sequence of bounded functions, une B, which converge 

t o  uo€ B. If each un i s  (uniformly) continuous i n  t, then u 0 

i s  (uniformly) continuous i n  t. If each un i s  almost periodic 

uniformly i n  n, then uo i s  almost periodic. 

This  lemma is a f a i r l y  standard one since convergence i n  B means 

pointwise convergence uniformly.in t, For the  continuous and uniformly con- 

t inuous proof, see any advanced calculus book, for example [ 163. For t h e  almost 

per iodic  proof, see, fo r  example, [ 173 e 
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The f i rs t  case handled i s  the non-cr i t ica l  case where none of t he  - 
eigenvalues of A l i e  on t h e  uni t  c i rc le .  The c r i t i c a l  case i s  where one o r  

more of the eigenvalues of  A l i e  on t h e  unit c i r c l e .  For the  non-cr i t ica l  

case, we assume t h a t  A has the  following form 

. '  

A =  

where A1 and A2 a r e  square matrices such t h a t  a l l  t he  eigenvalues of A1 

l i e  ins ide  t h e  unit c i r c l e  and a l l  the eigenvalues of l i e  outside t h e  uni' 

c i r c l e .  If t h e  matrix A i s  not i n  t h i s  form, it can be arranged t o  t h i s  fori 

A2 

by a transformation of co-ordinates. The assumption i s  t h a t  such a change of  

co-ordinates has already been performed. Let x = col(x ,x  ) and f ( t )  =- 

col( fl( t ) , f 2 (  t ) ) ,  

equation (22). ' 

1 2  

Then the  difference equation (19) becomes the  difference 

Exl = A x + fl(t) 1 1  
Ex2 = A2x2 + f2(t) 

Let  x,(t) be a solut ion of (22). Then 

x,(t) = A x ( t - l ) + f ( t - 1 )  = Al~l(t-2)+Alfl(t-a)+fl(t-1) 2 
11 

n n 
z ... = Alxl(t-n) + c j-1 AJ-lf l ( t - j )  1 . 

Since all the  eigenvalues of A i  are ins ide  the  uni t  c i r c l e ,  t h e  matrices 

approach zero exponentially a s  j -+a. Since f i s  bounded, t h i s  mean 

as  

4-1 
t h a t  t h e  sum converges a s  n 3 0 0 .  I f  x1 is bounded, then A:xl(t-n) + O  
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n 3 0 0  and 

00 
x,(t) = C A ,  j-1 f , ( t - j )  

3 =1 

There a r e  numbers a1 > 0 and bl, 0 5 bl < 1, such t h a t  

l q  ap;  f o r  a11 integers  n L 0 

and so 

Hence t h e  se r i e s  f o r  xl( t )  converges absolutely. This inequal i ty  along with 

equation (23) shows t h a t  xl( t )  does e x i s t  and t h a t  it i s  a continuous l i nea r  

function of f. 

If there  were two bounded solutions t o  (22), say x1 and x2 then 1 1' 

t h e i r  difference x1 x2 would be bounded and s a t i s f y  the  homogeneous differencc 1- 1 
equation Exl = A x 1 1' The only bounded solut ion o f  t h i s  difference equation 

hence x1 = x2 and the  bounded solut ion 1 1  is t h e  t r i v i a l  solution x1 = 0, 
_/ 

I s  unique. For fu ture  purposeQ--we write-3ld.s solut ion a s  (23') 

(23' 

where L1: B + B  i s  the  continuous l inear  operator defined by the  right-hand 

s ide  of  equation (23). 
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I n  a similar manner, we get the unique bounded solution x2(t)  as 

i n  equation (24) 

00 

X2( t )  = L2(f2)(t)  = - c A;j-lf,(t+j) 
j =o 

Since a l l  t he  eigenvalues of 

a2 > 0 

A2 are  outside the  uni t  c i rc le ,  there  are number, 

and be, 0 S b2 < 1, such t h a t  

IA;”I S a2bp for a l l  integers  n 2 0 

and so 

The s e r i e s  converges absolutely and L2: B + B  i s  a continuous l inear  operator 

We can wr i te  t he  unique bounded solut ion of  (19) as i n  equation (25) 

where , L:B + B i s  defined by 

and i s  a continuous l inear  operator. 

THEOREM 5 If t h e  matrix A does not have any eigenvalues on the  uni t  c i rc le ,  

then there  i s  a continuous l inear  operator L : B + B  such t h a t  

x = Lf  is t h e  unique bounded solution of (19). 



. .  

EX = Ax + f ( t )  
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( 19) 

T h i s  operator L has the following properties. 

1) If f is uniformly continuous i n  t, then so i s  Lf. 

2 ) '  If f i s  T-periodic i n  t, then so is '  Lf. 

3) If f i s  almost periodic i n  t, then so i s  Lf. 

PROOF: The existence and continuity of L and the  uniqueness of  the  solution 

x = Lf A l l  t h a t  remains i s  t o  prove a r e  'proven i n  the  preceeding discussion. 

t h a t  L possesses these th ree  properties. 

The proof of  each depends on the  following fact .  Let h be some 

real  number and f E B. Define fl€ B by f l ( t )  = f ( t+h) .  Let x = Lf and 

defined xl€ B by x,(t) = x(t+h).  Then x1 = Lfl since, i n  equations (23) 

and (24), t can be replaced by t+h  on both s ides  of the  equations without 

d i s turb ing  the  equal i t ies .  

Since L : B + B  i s  a continuous l i nea r  operator, there  is a number 

for  a l l  f E B. k, 0 d k < 00, such t h a t  IILffl d kllfll 

1) If f is uniformily continuous i n  t, then, f o r  each E > 0, 

the re  i s  a 6 = 6( E) > 0 such t h a t  I f ( t+h) - f ( t ) l  si E for a l l  h, 1 hl i?i 6. 

For any such h, l e t  f l ( t )  = f ( t + h ) .  Then fie B, IIfdl = I I f l l l  and llfl-ql = 

sup[ ( f l ( t ) - f ( t ) l :  a l l  t )  d E. Let x = Lf  and xl( t )  = x(t+h). Then 

x1 = Lfl and 

Thus we have, fo r  each 

Hence x = L f  is uniformly continuous i n  t. 

E > 0, I x(  t+h)-x( t)l 5 Ilxl-xII S ke fo r  ali h, 1 hlS6( E) 
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2) If  f i s  T-periodic, then f(t+T) = f ( t ) .  Let f l ( t )  = f(t+T). 

Then fl€ B, IIfdl = lldl, and fl-f = 0. Let x = Lf and xl(t)  = x(t+T). 

Then x1 = Lfl  and xl-x = Lfl-Lf = L(fl-f) = 0, implying t h a t  x I Lf  i s  

T-periodic. 

3) If f i s  almost periodic, then, f o r  any E > 0, there  i s  an 

f ( E )  > 0 such that ,  i n  any in t e rva l  of length f ( E ) ,  there  i s  a T such t h a t  

I f ( t+T)- f ( t ) l  4 E 

f o r  a l l  t. For t h i s  E, f ( E ) ,  and T, l e t  f l  be the  function defined by 

f l ( t )  = f(t+T).  Then IIfl-dl E. Let x = Lf and x&t) = x(t+T) 3: Lfl(t). 
/----- 

Then 

and we see t h a t  x = Lf  i s  almost period 

As an example of the  application of t h i s  theorem, consider the fol-  

lowing in t e re s t ing  problem. Given the  following d i f f e r e n t i a l  equation where 

f E B, f ind  a solution x E B 

kl = x2 

k2 = -xl + g( t )  

numerically by using the  Crude Euler method. For t h i s  d i f f e r e n t i a l  equation an( 

a given spacing 

d i f fe rence  equation. 

h > 0 i n  t, the Crude Euler method i s  given by the  following 
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Ex1 = x + h? 

Ex2 = x2+ hk2 = -hxl+ x2+ hg( j s )  

= x + hx2 1 1 1  
( 26) 

Here, t he  independent var iable  i s  changed t o  s where t = hs  i n  order t o  

br ing t h i s  difference equation in to  the form of equation (19). 

t i o n  (19) becomes equation (26) i f  we l e t  

In  fact ,  equa- 

The eigenvalues of A a re  XI = l + i h  and X2 = 1-ih. Neither X1 nor % 
a r e  on t h e  uni t  c i rc le ,  so Theorem 5 ho lds .  

151 > 1, equation (24) gives the bounded solution of (26) f o r  any bounded 

function g. Since the  d i f f e r e n t i a l  equation has no bounded solution f o r  

g ( t )  = s i n  t, we see t h a t  t he  behavior of  t he  differenc'e equation (26) i n  t h i s  

case i s  considerably d i f f e ren t  from the d i f f e r e n t i a l  equation. 

Indeed, since I X1l > 1 and 

- 

. .  

Let  x be the  bounded solution o f  (26). Then the  bound on x is 

given by 0 

II ell ( l+h2)-* II dl 1+( l;h2)$ I~ dl f 1+( 1+h2)* 

1-( l+h2)-& h h 
iXwi 5 

and we 'see t h a t ,  while h > 0, i f  h i s  small then the  bound on I x( t)l may 

be la rge  indeed; i n  the  limit as  

For 

h +O, t he  bound becomes i n f i n i t e  ( i f  IIdl>O), 
g ( t )  = s in  at, we get t he  solution 

xl(t)  = altos cut + a2* s i n  cut 

x2(t)  = ?cos cut + a4 s in  cot 
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where 
2 2 2 2  2 2 

d = ( (  1-cos &) - ( s i n  cuh) +h ) + 4( s i n  ah) (1-cos cch) 

= 2h2ein cob( 1-cos &)/d 

= h ((1-cos ah) - ( s i n  wh) +h )/d 
2 2  

011 

a2 
2 2 

2 2 2  3 t -h s i n  oh((1-cos ah )  + ( s i n  wh) -h )/d 
2 2 2  

a4 = -h( 1-cos ah)((.l-cos oh)  + ( s i n  oh) +h )/d 

2 2  4 
We not ice  t h a t  I xl(t)l S a1 + a: = h /d, t h a t  x2(t)  i s  approximately 

4 
orthogonal t o  

t o  t h e  upper bound of I x( t ) l  . Expanding s in  uh and cos ah 

xl( t), and so the  term h /d w i l l  give us a good 

2 

Taylor ser ies ,  we get 

s i n  wh = cuh - $ 2 h 3 +  . . . 

and, a f t e r  some simplification, 

. 

approximation 

i n  t h e i r  

2 2 4  1 4  2 6 d = (1-0) h + 0-0  (7-0 )h + ... 6 

The bound we des i r e  i s ’  

1 4 h 
I-= 

( 1 - ~ ~ ) ~ +  1 04( 7-u2)h2+ . . . . 
6 

For 

d i f f e r e n t i a l  equation s a t i s f i e s  

w # 1, t h i s  i s  close t o  the desired amplitude. The bounded solution o f  tl 
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2 2  I x(t)l 1/( 1-0, ) 

/ 
h , t h i s  bound is h /d. - 2  4 end we see tha t ,  i f  we ignore t e rns  of order 

when o = 1, there  i s  no bounded solution- of  t h e  d i f f e r e n t i a l  equation and t h e  

__ -- 
However 

solution of the  difference analog i s  bound on the  bounded 

2 h4 1 x ( t ) (  s - = 2 h + ... 

This shows t h a t  t h e  bound for  IIxll can be reached. While t h e  behavior of the  

bounded solution of t he  difference analog (26) i s  considerably d i f f e ren t  than 

t h e  behavior of t he  bounded solution of t h e  d i f f e r e n t i a l  equation near w = 1, 

t h i s  f a c t  can be eas i ly  detected by computing the  solution twice, once with 

h = ho and once with h = qho. 

then ho 

m e a t l y  from the  behavior of the  d i f f e r e n t i a l  equation. 

use e i t h e r  a much smaller h o r  a d i f fe ren t  numerical method. 

1 I f  the two computed solutions vary greatly, 

i s  i n  a region where the  behavior of the  difference analog d i f f e r s  

The solution i s  t o  

THEOREN 6: If t h e  matrix A i s  such t h a t  none of  i t s  eigenvalues lie on the  

unit c i rc le ,  then t h e r e  i s  some 

bounded solution x*(t) of (27) f o r  each E, I E l  < El, 

el > O  such t h a t  there  is a 

EX = Ax + E f ( t , x , E )  

where f ( t ,x ,E)  i s  bounded fo r  each fixed bounded x, each E, 

I E(  < E ~ ,  and a l l  t, and f i s  uniformly Lipschitz continuous 

with Lipschitz constant .  F for  a l l  t i n  (-m,m) and all x 
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w i t h  I XI 5. M, some M > 0. T h i s  bounded solution x*( t )  has 

t h e  following properties,  

1) If f ( t ,x ( t ) ,E)  i s  continuous i n  t fo r  fixed E, contin- 

uous x, then so i s  x*(t). 

2) If f( t ,x( t ) ,E)  is T-periodic i n  t for  fixed E, T-periodi 

x, then so i s  x*( t ) .  

3) If f( t ,x( t ) ,E)  is almost .periodic f o r  any almost periodic 

x( ti), then so i s  x*( t) . 
This  r e s u l t  d i f f e r s  from t h a t  of Halanay 1103 i n  that ,  i n  t h i s  paper, 

Halanay only considers t he  solution t o  be defined on the  integers.  Thus, when 

Halanay dea ls  wi th  T-periodicity, T must be an integer.  H i s  work with almosl 

per iodic  functions i s  for  functions almost periodic on the  integers.  Thus, thi 
I 

r e s u l t  i s  a generalization of Halanay' s r e su l t  i n  [ 103. 
I 

a r e  ins ide  the  un i t  c i r c l e ,  then t h l !  

A t  t he  same t i m  

If a l l  t h e  eigenvalues of A 

theorem i s  a special izat ion of the r e su l t  of  Halanay i n  1113. 

t h i s  r e s u l t  i s  more general t h a n  tha t  of Halanay i n  1113 since t h i s  r e s u l t  

allows 

PROOF: Let x be any bounded function with IIxll 5 M. Let  N be t h e  positiv 

number such t h a t  1 f (  t,x, €)I d N for all t, a l l  x wi th  I XI B M, and 

I€\ < eo, some 

A t o  have eigenvalues outside the  uni t  c i r c l e .  

Eo > 0. For t h i s  x, define the  operator L* by 

- __------ 

where L i s  the  l inear  operator of Theorem 5. Then 
- ~- 

I 
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where K i s  t h e  bound on L from Theorem 5. Thus, L* maps bounded func- 

t i o n s  i n t o  bounded functions. Furthermore, i f  \El Ktl S M, w e  get  t ha t  

IIL*(x)ll 5 M. 

If x* i s  a fixed point of L*, i.e., x* = L*(x*), then x* i s  t he  

bounded solution of  

EX = Ax + Ef(t ,x*(t) ,e) 

and hence i s  the  desired solution. We w i l l  show tha t  such a fixed point e x i s t s  

by showing t h a t  L* is a contradiction mapping fo r  ]El small enough, 

Let x1,x2 be bounded solutions wi th  IIxdl M and 1 1 ~ ~ 1 1  B M. 

Then 

since f i s  uniformly Lipschitz continuous w i t h  Lipschitz constant F. 

If E i s  such t h a t  I E l K N  5 M and I E l K F  < 1, then L* i s  a con- 

L* t r a c t i o n  mapping on the  s e t  

x* with IIx*ll d M, T h i s  i s  the  case f o r  a l l  E such t h a t  I E l  < El and 

IIdI S M, and has one and only one fixed point 

M 1  
E: = min (eo, E , - 1  KF 1 

I 

ll ,, 
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1) If f(t,x,C) i s  continuous i n  t fo r  fixed x,€, then 

f( t ,x( t ) ,E)  i s  continuous i n  t whenever x i s  continuous i n  t, thus L*(x) 

i s  continuous i n  t. I n  the  i t e r a t ions  used t o  prove the existence and unique- 

ness of x*, t h e  i n i t i a l  function x1 i s  chosen continuous i n  t, then each 

i t e r a t e  5 w i l l  be continuous i n  t and so the  l i m i t  x* w i l l  be continuous 

i n  t. 

2) If f(t,x,E) i s  T-periodic i n  .t for  fixed x,E, then 

f ( t ,x ( t ) ,E)  i s  T-periodic i n  t for  any T-periodic x and L*(x) i s  T- 

periodic w i l l  lead t o  the  l imit ing function x* being T-periodic. 

3) If f(t ,x(t) ,E) i s  almost periodic i n  t f o r  any almost periodic 

x, then L*(x) 

function x1 w i l l  lead t o  an almost periodic l imi t ing  function x*. 

w i l l  be almost periodic and choosing an almost periodic i n i t i a l  
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AFFINE DIFFERENCE EQUATIONS -- SIMPLEST CRITICAL CASE 

The problem considered here i s  t o  f ind  a T-periodic solution of the  

difference equation ( 28) 

Ex =. x + f ( t )  . (28) 

where f ( t )  i s  T-periodic f o r  some T Z 1 and f i s  integrable. 

T h i s  case i s  cal led c r i t i c a l  because t h e  homogeneous equation has 

non- t r iv ia l  T-periodic solutions.  It i s  the  simplest c r i t i c a l  case because 

t h e  matrix A i s  the  simplest possible matrix, t he  un i t  matrix I. 

We use the  notation t h a t  [t] i s  the  la rges t  integer  l e s s  than o r  

equation t o  t and t = [t] + ( t ) .  We c a l l  [t] the  integer  -- par t  of - t and 

( t )  t h e  f r ac t iona l  par t  of t since [t] i s  an integer  and 0 S ( t )  < 1. -- - 
For each integer  n > 0, the  solution x( t) i s  given by 

- - ------- 
n 

x ( t )  = x(t-n) + C f ( t - j )  
j-1 - 

Lett ing n = [t], .we get (29) f o r  t z 1 

where x ( ( t ) )  = xo(( t ) )  i s  the  i n i t i a l  function. The problem i s  t o  determine 

under what conditions of f w i l l  there  be an xo such t h a t  x ( t )  given i n  

(29) is T-periodic. From ( 2 9 )  we get, using f( t+T) = f(t), 

I t + T 1  

j=[ t]+l 
x(t+T)-x(t)  = x(( t+T)) -x( ( t ) )  + f ( t+T-j)  
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[%+TI 4 tl  
= x(( t+T))-x(( t ) )  + f (  ( t ) - j )  

j =1 

While equation (30, was derived using the solut ion defined only f o r  

can be eas i ly  shown t h a t  equation (30) hold f o r  a l l  t i n  ( -OD,=).  Thus, i f  

we can f i n d  an i n i t i a l  function such t h a t  the  r igh t  hand side of (30) i s  

zero iden t i ca l ly  i n  

solution. 

t 3 1, it 

xo 

t, then t h a t  i n i t i a l  function w i l l  give a T-periodic 

The first, and simplest, case considered i s  when the  period T i s  

an in teger  2 1. Then (t+T) = ( t )  and [ t+T] = T+[ t ]  and (30) becomes (31) 

T 
x( t+T)-x( t) = c f( ( t ) -  j) 

j =1 

and x ( t )  i s  T-periodic if and only if f ( t )  s a t i s f i e s  (32) f o r  a l l  t. 

T 

j =1 
c f ( ( t ) - j )  = 0 

Wheneyer the  solution i s  defined only for t integer, then (32) i s  the  con- 

d i t i o n  t h a t  i s  necessary and suf f ic ien t  fo r  a T-periodic solution of (28) t o  

e x i s t  [ lo]. 

For any r e a l  T, l e t  x1 be a T-periodic solution of the  homogeneous 

equation Ex = x. Since a l l  solutions of t he  homogeneous equation a re  1-peri- 

odic, x i s  both 1-periodic and T-periodic. If  T i s  i r r a t iona l ,  then the  

o n l y . p o s s i b i l i t y  i s  xl(t)  = constant. If T = m/n where m and n a re  

r e l a t i v e l y  prime integers,  then any l/n-periodic function w i l l  do for  

1 

xl( t ) .  



If T is an integer, then any 1-periodic function w i l l  do f o r  xl(t) .  

Suppose t h a t  

T 
. I = J xl(t+s)*f(t+s)ds # 0 

0 

where xl(t+s)* denotes t h e  complex conjungate transpose of  x ( t + s ) .  This 1 

in teg ra l  i s  independent of t. For any solut ion x ( t )  of (28), consider 

T 
d t )  = J xl(t+s)*x(t+s)ds . 

0 

Since xl( t + s + l )  = xl( t+s) ,  we have 

T 
'((t+l) = xl( t+s+l)*x( t+s+ l )ds  

0 

T 
6 I XI( t+S)*( X( t+S)+f( t + s ) ) d s  = Y(t)+I 

0 

and hence 

Since I y( t ) l  + m as t +a, we have t h a t  x ( t )  must be unbounded a s  T + 00 

and hence cannot be periodic. This condition I # 0 i s  the  condition of 

resonance and i s  exactly analogous t o  resonance i n  d i f f e r e n t i a l  equations. 

LEMMA 9 A necessary condition ,for a T-periodic solut ion of  (28) t o  ex i s t  i s  

t h a t  
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T 
I xl(S)*f( s ) d s  = 0. (33) . 
0 

fo r  every T-periodic solution xl of  the homogeneous equation 

EX = X .  

If T . i s  an i r r a t i o n a l  number, the_n_coniKtJ;afi (33) becomes simply 
_. 

T 
I f ( s ) d s  = 0 . 
0 

If T = m/n where m 

condition (33) becomes 

T 

and n a r e  r e l a t i v e l y  prime integers,  then 

I x”,s)f(s) .J  = 0 
0 

for all l/n-periodic functions xl( t). 

I n  the  case where T i s  an integer, a l l  1-periodic functions x1 

are permissible and t h i s  condition becomes 

1 T 

0 j -1 
t I xl( s)* C f( s-j)ds 0 . 

One candidate for  xl( s) i s  

X1(S) = i f((S) - j )  
j =1 
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2 
which i s  1-periodic. Using t h i s  xl( s) and l e t t i n g  I XI =, x*x for  any 

n-vector x, we get equation (34) .  

2 1 T  
I a I f ( s - j ) l  d s  = 0 

0 j= l  

Comparing t h i s  t o  condition (32), we see t h a t  condition (32) implies 

condition (34) and also t h a t  condition (34)  implies condition (32) almost 

everywhere i n  t. 

of  measure zero as the  same function, then conditions (32) and (34) a re  

If we ident i fy  a l l  functions which a re  equal except on s e t s  
* 

equivalent. I n  the  work t h a t  follows, t h i s  ident i f ica t ion  of functions sha l l  

' always be made. Thus, when we write f ( t )  = g ( t ) ,  we mean t h a t  they agree 

f o r  a l l  t except possibly on a se t  of measure zero. 

Let X1 = L2[0,1). For a given T, l e t  S be the  s e t  o f  a l l  T- 

per iodic . funct ions f which a re  square integrable  over one period. For 

each f E S, define 1141 by 

The functions en€ S, 

en( t )  = exp( i m t )  n = 0,fl,f2, ... 
1, 

where w t 2rr/T, form a complete orthogonal basis i n  t h i s  Hilber t  space 

That is, each f i n  S can be writ ten as (35) 

S. 



61 

where the  sum on n i s  over, a l l  the  integers, pos i t ive  and negative, and t h e  

are the  Fourier coef f ic ien ts  o f  f.  'n 

T 
fn = 'i; 1 I en(-s ) f ( s )ds  n = O,+l , f2 ,  ... 

0 
(35' 1 

Let S1 be the  s e t  of a l l  square integrable  T-periodic solutions 

of  t he  homogeneous equation Ex = x. Then S1 i s  a subspace of  S and 

cons is t s  of functions which a re  both 1-periodic and T-periodic. If T i s  an 

i r r a t i o n a l  number, then consis ts  only of constant functions and, i f  

x E SI, then x ( t )  = xoe0(t) f o r  some constant vector xo. If  T i s  a 

r a t i o n a l  number and T = M/N where M and N a re  r e l a t i v e l y  prime integers, 

then SI consis ts  of a l l  square integrable 

x € SI, then 

S1 

1/N-periodic functions and, if 

x( t )  = %XMn'&) 

where 5 i s  t h e  Mn-th Fourier coeff ic ient  of X. 

Let P be the  projection operator which maps S onto S1. That 

ie,  if x € S, then Px E S1 and, i f  T i s  i r r a t i o n a l  

and, if T = M/N as before, then 



! 

62 

Let  S2 be the  orthogonal complement of  S1, i.e., all the  fhnctioris 

x i n  S which s a t i s f y  Px = 0. 

If x E S, then Ex E S and 
* 

* 

Ex( t )  = IS( t+l) = t + l )  = b n 4 n (  l)en( t )  

and, i f  T i s  i r r a t i o n a l  

, 

If T = M/N as  before 

since @ E SI (hence QMn( 1) = 1) for  n = 0,51,*2, ... . I n  e i the r  case, 

we get  t he  important f a c t  t h a t  PEx = Px f o r  any x E S. 
Mn 

LeMMA 10 The condition Pf = 0 i s  necessary f o r  a T-periodic solution of t h e  

difference equation (28) t o  ex is t .  

Ex = x + f ( t )  ( 28) 

T h i s  condition Pf = 0 i s  the  sam*e a s  conditions (32) and (33). 
r 

Lema 10 and Lemma 9 a re  the same. Both a r e  included since they a re  

proven using d i f f e ren t  terminology. The condition Pf = 0 i s  the  same as  

condi t ion (33) but t he  former condition i s  eas i e r  t o  p ic ture  geometrically and 
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i s  eas ie r  t o  check. P i s  a projection operator which projects  any T-periodic 

f i n  S onto the  subspace S1 of T-periodic solutions of Ex = x. Thus, 

t he  condition Pf = 0 i s  t h a t  f must be orthogonal t o  the  subspace Sl’. 

P has t he  exp l i c i t  representation given i n  equation (36), so we can check 

if Pf = 0 merely by checking ce r t a in  Fourier coef f ic ien ts  of f. 

PROOF: Suppose x is a T-periodic solution of (28). Using t h i s  x, operate 

with the  projection P on equation (28). 

mx = hr + Pf. 

Since PEx = Px, we get Pf = 0. 

LEMMA 11 If x E S i s  a T-periodic solution of (28), then there  i s  a &que 

T-periodic solution 2 of  (28) which s a t i s f i e s  s = 0. This 2, 

considered a s  a function of 

f. If the  T-periodic solution x can be chosen i n  a manner such 

f E S, Pf = 0, i s  a l i nea r  function of 

t h a t  it i s  a continuous function of f, then 9: S2 + S  i s  a con- 

tinuous l inear  function of  f and there  i s  some k, 0 5 k < a, such 

t h a t  II f ) I I  dl f l l  

PROOF: For any x E: S, t he  function 2 = (1-P)x i s  i n  S and s a t i s f i e s  

pji = 0. 

Let be another T-periodic solut ion of (28) sa t i s fy ing  P!? = 0. 

Then 9-2 i s  a solution of t he  homogeneous equation Ex = x and thus i s  an 

element of S1. So 

n 

A A h  x-x = p(2-4) = s-fi = 0 ’ 
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k and 9 = X. Hence the  T-periodic solution 4 sa t i s fy ing  fi = 0 e x i s t s  and 

is unique. Denote t h i s  as a function of f by 2 = g(f). 

Since d ( f )  i s  a solution of (28) with f replaced by cxf for 

any sca l a r  a, d ( f )  i s  T-periodic and s a t i s f i e s  P(&(f)) = aF5?(f) = 0, we 

see t h a t  a$(f)  = ?(of). 

Since 5?(fl) + s(f2) i s  a solution of (28) w i t h  f replaced by 

fl+f2 f o r  any fl€ S, f 2 E  S, Pfl = Pf2 = 0, .fi(fl)+2(f2) i s  T-periodic and . 

s a t i s f i e s  

fi(fl+f2). Hence, B ( f )  i s  l i nea r  i n  f .  

P($(fl)+fi(f2)) = f i ( f l ) + E ( f 2 )  = 0, we see t h a t  fi(f,)+%(f2) = 

If x i s  chosen i n  a manner such t h a t  it i s  a continuous function 

of  f, then, since = (I-P)x i s  a continuous function of x, fi i s  a con- 

tinuous function of f. The inequality IIf;(f)II 6 Nlfl( follows from the  f a c t  

t h a t  2 i s  a continuous l i nea r  function of f [TI .  
This preceding lemma shows that ,  i f  a T-periodic solution exis ts ,  then 

there  i s  a unique solution 

t h a t  P 2 = 0. 

2 which has all t he  desired properties,  notably 

The problem now i s  one of f inding a T-periodic solut ion t o  (28) 
.O 

b 

For the  case when T i s  a r a t iona l  number, the  solution 2 = %(f) 

can be found by comparing Fourier se r ies  d i rec t ly .  

THEOREM 7 If f E S s a t i s f i e s  Pf = 0 and T = M/N where M and N a r e  

r e l a t i v e l y  prime integers,  then there  is a continuous l i nea r  oper- 

a t o r  L:S2 S2 such t h a t  2 = L( f )  is t h e  unique T-geriodic 

solution o f  (28) which 

EX = x + f ( t )  (28) 

s a t i s f i e s  ~ 5 ?  = 0. 
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PROOF: If there  i s  such an 2 E S2, then it can be represented by i t s  Fourier 

Series.  

where t h e  xn, n = O,fl,52,. . ., a re  the Fourier coef f ic ien ts  of 9. Since 

f E S2, it has the  Fourier s e r i e s  

The condition Pf = 0 i s  t he  condi t ion. that  fn  = 0 whenever n/T i s  an 

integer.  Then 

%( t+ l ) -2 ( t ) - f ( t )  = %( (Qn( l ) - l )xn-fn)an(t)  0 

I 

If 2 

i. e., 

i s  t o  be a solut ion of (28), then each o f  the coef f ic ien ts  must be zero, 

If n/T i s  an integer  then f i  = 0, O n ( l )  = 1, and xn i s  arbi t rary.  The con 

d i t i o n  pfi = 0 spec i f ies  xn = 0 whenever n/T i s  an integer.  If n/T i s  

not  an integer,  then On( 1) f 1 and xn i 8  given by (37) 
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Thus, 9 i s  a l inear  function of f. 

show t h a t  t h i s ,  2 

T h i s  preceding work i s  valid if we can 

i s  square integrable. 

Since T i s  a r a t iona l  number and en( t) rn exp( Imt), T P M/N where 

M wd N a re  r e l a t ive ly  prime integers and 

f o r  a l l  n such t h a t  n/T # an integer. Then 

1 
where zn means t h e  sum over a l l  the  integers n such t h a t  n/T # an integer. 

This shows t h a t  2 i s  i n  S2 and i s  a continuous l i nea r  function o f  f.  The 

l i nea r  operator L i s  defined by 

1 
where fn i s  the n-th Fourier coeff ic ient  of f and En has the  same rneanine 

as before. 
J 

By Lemma 11, we know t h a t  t h i s  i s  the  only such solution. 

If T is an i r r a t i o n a l  number, then the  Fourier coef f ic ien ts  of  2 

would s t i l l  be defined by (37) (except f o r  xo which i s  zero), The problem 

then i s  one of showing t h a t  

is bounded o r  under what conditions i s  2 a continuous l inear  function of f. 
-~ ~- -- - - ~ - _ _ _ -  
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The permissible functions f w i l l  probably have t o  be r e s t r i c t ed  t o  be some 

subset of S2, For one solution of t h i s  problem, see Moser [ 113.  

If there  i s  a continuous l inear  operator L:S2 + S2 such t h a t  9 = 

is t he  unique solution of (28) which s a t i s f i e s  

l i nea r  problems could be studied i n  a manner s imilar  t o  Hale [ 123. 

t he re  a r e  problems i n  determining the  meaning of the  f a c t  tha t  t he  non-linear 

term must be bounded and Lipschitz continuous i n  the  norm of S, i.e. t he  

L2[ 0, T] norm. 

= 0, then a class of  non- 

However, 

As an example, consider the  Crude Euler difference analog t o  the  

d i f f  er ent  i a l  equation 

2 = f ( t )  

where f ( t + T )  = f ( t ) .  Lett ing t = hs, t he  analog i s  

EX = x + hf(hs) = x + g(s) 

If we chose h such t h a t  T = hN fo r  some integer  N, then t h i s  difference 

analog' i s  l i k e  equation (28). I n  t h i s  case, t h e  condition Pg = 0, which i s  

necessary and suf f ic ien t  f o r  an.N-periodic solut ion of the difference analog t o  

ex is t ,  i s  t h a t  

INei2rms g(s)ds = 0 

or,  i n  terms of f and t 
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. 
0 0 

If 

T 
I f ( t ) d t  = 0 
0 

then a T-periodic solution t o  the  d i f f e r e n t i a l  equation does ex is t .  

we see t h a t  t h i s  i s  only one of  the  conditions needed t o  have a N-periodic solu- 

t i o n  of  the  difference analog t o  exis t .  I n  fact ,  every N-th Fourier coeff ic ient  

of  f must be zero before there  e x i s t s  an N-periodic solution t o  t h e  difference 

analog. If one o r  more of these Fourier coef f ic ien ts  a r e  not zero, then there  

does not e x i s t  an N-periodic solution t o  the difference analog, 

However, 

If T/h = N i s  an i r r a t i o n a l  number, then the  condition Pg = 0 

reduces t o  t h e  condition which i s  necessary and suf f ic ien t  for  a T-periodic 

solut ion o f  t h e  d i f f e r e n t i a l  equation t o  exis t .  

t o  show t h a t  the  condition i s  suf f ic ien t  for  an N-periodic solution of  

t he  difference analog t o  e x i s t  when N i s  an i r r a t i o n a l  number. 

However, I have not been able 

Pg = 0 

The aim of a l l  t h i s  work i s  t o  develop a bifurcat ion theory analogous 

to  t h a t  i n  Hale [12]. The f i r s t  s tep  i n  t h i s  theory i s  t o  show t h a t  there  exists 

a continuous l inear  mapping L:S2 such t h a t  h x = Lf i s  the  unique T- 

periodic solut ion of (28) which s a t i s f i e s  F'? = O. T h i s  has yet  t o  be done for 

the case when T is an i r r a t i o n a l  number. Yet, f r o m  t he  above exampl'e, it 

would appear t h a t  t h i s  would be the  most i n t e re s t ing  case. 
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9N AVERAGING METHOD WITH AN APPLICATION 

Halanay [lo] gives t h e  following theorems f o r  a system of  almost- 

periodic difference equations. While a l l  h i s  work i s  concerned w i t h  t he  solu- 

t ion being defined only on the  Integers, his proofs are eas i ly  extended t o  In- 

clude t h e  solution being defined on the  reals.  I n  [lo], Halanay first gives an 

spproximation Lemma which i s  stated here. 

LEMMA 12 If f ( t )  i s  such t h a t  

a).  I f ( t ) l  5 F f o r  a l l  t, some F B 0 

N 
b) 1; %-,f(t-k)l L 5 E(N) f o r  a l l  t, some E(N) Z 0 

and €(N) + O  a s  N + m .  For some 7, 0 < 7 < 1, l e t  f be 

t he  f'unction defined by 
rl 

Then there  e x i s t s  a continuous function S(q) with 6(?) 4 0  as 

q -0 such t h a t  

- 
- 

That is, f 

which can be made as accurate as desired by taking 

is 'an approximate solut ion t o  t h e  difference equation (2e 
7 

7 small enough. 

.. 



Condition b) i s  the  natural  one t o  use f o r  difference equations since 

the  solut ion of (28) i s  a sum of 

very hard t o  verify.  

d i f f e r e n t i a l  equations, we w i l l  have f( t)  = g(ht) for some h > 0 -and 

f(t-k).  However, t h i s  condition i s  usually 

When t h i s  l e m a  i s  applied t o  the  numerical solut ion of 

T 
1; 1 g(t-s)ds( d E1(T) for  a l l  t 

0 

where 41(T) 0 a s  T + m. 

The following ident i ty ,  a modification of t h e  Euler-Maclaurin sum- 

mation formula, i s  eas i ly  ver i f ied  by integrat ion by parts.  

N N N 

where f'(t) i s  the  first der ivat ive of f w i t h  respect t o  T. Making the  

change of var iables  f ( t )  = g(ht),  we get 

u T h T 1 N 1 - N =  If(t-k) = F 1 g(ht-s)ds - I g'(ht-s)(g)du 
0 0 

where T,= Nh. I n  general, t h i s  last  i n t eg ra l  w i l l  not go t o  zero as T + m  

even though the  f i rs t  one does, However, under f a i r l y  general  conditions, e.g. 

I gs( t ) l  bounded f o r  a l l  t, we can bound t h i s  l a s t  i n t e g r a l  by hC, 

T I T  h I g'(ht-s)(;)dsl d hG f o r  a l l  t 
0 



I n  general, we get t h i s  sum going t o  zero only by lettLng h go t o  

However, *if  we look a t  the  proof of Lemma 12, we see t h a t  the  c r i t i c a l  zero. 

inequal i ty  i s  

and we get t he  desired 

q such t h a t  

6(q) by l e t t i n g  N = N(q)  be chosen as a function of 

E(N) L(1-Q) N 

Then we get  6 ( ~ )  = W(v)(l+F). 

If, instead of t h e  sum of f went t o  zero; w e  knew only t h a t  t he  

i n t e g r a l  of g went t o  zero where f ( t )  = g(ht),  then t h i s  c ruc ia l  inequal i ty  

becomes : 

We now l e t  N and h be chosen a s  functions o f  7 such t h a t  

2 h G 5 L(1-v) N 

2 E 1 ( N h )  s L ( 1 - v )  m 

Ehese functions h = h(v) and N = N(q) s a t i s f y  h(7) 4 0  a s  7 +Oo,  

h ( v ) N ( q )  -+= as 7 40, and q N ( 7 )  4 0  as q 40. Then we get 
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Thus, Lemma 12 i s  s t i l l  t rue.  However, t h i s  solution has the  undesirable 

property t h a t  we must l e t  h + O  as  7 +O. This means that ,  i n  order  t o  have 

6(q) 'small, i.e., have f ( t )  be an accurate solution of (28), then we must 

take both N large and h small. 
'I 

There is one exception t o  t h i s  problem of  h(7) + O  a s  9 + O .  If 

g ( t )  i s  P-periodic and P/h i s  an i r r a t i o n a l  number, then the  theory of 

equidistributed sequences [ 14,151 gives us t h a t  

In t h i s  case, i f  

P 

0 .  

r i  g(s)ds  = 0 P 

then we have the  existence of some E (N) 'such t h a t  3 

N 
g(ht-hk)l d E (N) for  a l l  t 

%=l 3 

and E3(N) + 0 a s  N + JO. Thus, i n  t h i s  case, t he  conditions of Lemma 12 are  

satisfied. If P/h is ra t ional ,  then we can construct a g such t h a t  t h i s  

sume does not go t o  zero as N +a, and we have t o  pick h small i n  order t o  

get  t h e  desired accuracy. 

Consider t he  difference equation (38) where A(t), A-'(t), and 

f(t ,x,E) a re  almost periodic i n  t uniformly i n  x and E. 
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EX = A(t)x + Ef(t,x,e) 438)  

Let X(t) 

with X ( e )  = I, 0 d 8 < 1, and l e t  X ( t )  

be the  pr inciple  matrix solution of  the  homogeneous equation (39) 

and Xol ( t )  be'almost periodic i n  t. 

EX = A(t)x (39)  

If A and f a re  periodic i n  t, then they a re  a l so  almost periodic. 

The problem i n  requiring X(t) 

i n i t i a l  function 

t o  be periodic i s  t h a t  t h i s  choice of the  

X ( 0 )  = I, 0 d 8 < 1, w i l l  not i n  general lead t o  a periodic 

solut ion even i f  there  e x i s t s  a fundamental matrix solution of (39) which i s  

periodic. Determining t h a t  the  principle matrix solution i s  almost periodic 

i s  an eas ie r  task  than finding a fundamental matrix solution which i s  periodic. 

For example, i f  A ( t )  = A, a constant 2 by 2 matrix, both the eigenvalues o f ,  A 

have simple elementary divisors,  and the eigenvalues of  * A  

c i r c l e ,  then the pr inciple  matrix solution X(t) i s  almost periodic. A very 

ca re fu l  choice of 

periodic.  

l i e  on the  uni t  

X(e), 0 S 8 < 1, w i l l  have t o  be made before X(t) w i l l  be 

I n  t h i s  sense, it seems more na tura l  t o  look f o r  almost periodic 

solut ions of difference equations than t o  look f o r  periodic solutions. 

By the  change of var iables  x = X(t)y, t he  difference equation (38)  ' 

become 6 

- 

where 
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is almost periodic i n  t uniformly i n  y and E .  Let go(y,E) be 

The average value of  g(t,y,E) (s ince g(t ,y,€) i s  almost periodic, t h e  l imi t  

e x i s t s  uniformly i n  y and E and i s  independent of t). Let yo be a solu- 

tion of  go(y,O) = 0 and l e t  t he  matrix H be 

The following theorem i s  a restatement of Theorem 5 i n  Halanay [lo]. 

THEOREM 8 The pr inciple  of averaging: If the  r e a l  p a r t s  of a l l  t he  eigenvalues 

of H a r e  l e s s  than zero, then there  e x i s t s  an almost periodic 

solution x(t,E) of (38) f o r  each E, 0 < E < eo, some C > 0, 

which reduces t o  x(t,O) = X(t)yo as E +O. 
0 

Consider as an example of  t he  application of Theorem 8 the  Crude Euler 

difference analog f o r  (42) 

j ,  = E f ( t , X , E )  ( 42) 

where f(t ,x,E) i s  almost periodic i n  t uniformly i n .  x and E .  Let the  

average value of f(t,x,E) be fo(x,E). 
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T + * T  o 

fo(x,E) = l i m  - 1 / f ( t - s ,x ,E)ds  

The Crude Euler analog i s  given i n  (43) 

where 

Ex = x + Eg(t,x,E) (43) 

g(t,x,E) = hf(ht,x,E). 

This equation already i s  i n  the  form of equation (40) so the  change of  variables 

x = X(t)y does not have t o  be performed. The average value of g(t,x,E), 

g,(x,4, i s  given by 

This i s  not t he  average value used i n  Theorem 8 but, considering the  

discussion following Lemma 12, i f  we choose h a s  a function of 0 properly, 

then h = h(E) + O  as E -+O and the  conclusions of Theorem 8 s t i l l  hold when 

gl(x,€) replaces go(x,E). The matrix H 

go(x,E) 

3oes t o  zero a s  h + 0 but t h i s  .does not c rea te  any problems since g( t ,x ,E)-+ 0 

i s  h -+0 and the  e f f ec t s  of these two phenomena cancel each other. 

If xo i s  a solution of fo(x,O) = 0 and the  r e a l  par t s  of a l l  the  
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eigenvalues of H a re  negative fo r  h > 0, then there  e x i s t s  an almost periodic 

solution x(t,E) of  (42) f o r  each E, 0 < E < Eo, some E > 0, which reduces 

t o  x(t,O) = xo as E + 0. See, for  example, [ 123 f o r  a proof of t h i s  

statement. The significance of t h i s  application o f  Theorem 8 i s  tha t ,  under 

the  same conditions t h a t  insure the  existence of an ahnos€ periodic solution 

of  the  d i f f e r e n t i a l  equation (42), and the s tep  s i ze  i s  chosen small enough, 

there  i s  an a h s t  periodic solution of the  difference analog (43) and, fur ther-  

more, these  two solutions reduce t o  the  same solut ion x(t,O) = xo as E +O. 

0 

h 

While t h i s  i s  a case where the d i f f e r e n t i a l  equation and i t s  differencc 

analog d isp lay  the  same qual i ta t ive  behavior, i.e., t he  existence of  an almost 

periodic solution, t he  above analysis leaves several  questions unanswered. 

For example, do the  two almost periodic solut ions display the  same s t a b i l i t y  

properties? How close i s  t he  almost periodic solut ion o f  t h e  difference analog 

to the almost periodic solut ion of  t h e  d i f f e r e n t i a l  equation? 

I 
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AN INVARIANT MANIFOLD METHOD WITH AN APPLICATION 

Consider the  Van der Pol equation (44) with E > 0. 

With a constant spacing h > 0 and a change o f  independent var iable  from t t o  

6 = ht, t he  cen t r a l  difference analog t o  (44) becomes (45) 

Ey = x 
2 EX = (2-h ) X  - y + Ehf(x,y) 

Where 
I 

2 2 

1- Eh( 1-x2) 
(1-x )( (2-h )x-2y) 

f (X,Y) = f (X,Y,h ,€)  = 

It i s  wel i  known t h a t  the  Van der  Fol equation (44) has a s tab le  limit 

cycle which i s  a periodic solution w i t h  amplitude approximately 2 f o r  small 

E [ 123. 

play t h i s  same type of  behavior, a t  l eas t  f o r  t he  spacing h small enough. 

It would seem reasonable t o  expect the difference analog (45) t o  d i s -  

Yet t h e  examples given a t  t he  beginning of t h i s  paper show t h a t  such blanket 

assumptions about the  behavior of t h e  difference analog r e f l ec t ing  the  behavior 

o f  t h e  d i f f e r e n t i a l  equation cannot be made. The difference analog may display 

behavior completely different  from t h a t  displayed by t h e  d i f f e r e n t i a l  equation. 

The purpose of t h i s  section i s  t o  show t h a t  t he  qua l i t a t ive  behavior of t he  

difference analog (45) i s  the  same as the qua l i t a t ive  behavior of  the d i f fe ren t -  

i a l  equation (44)  f o r  E small. 

, The cen t r a l  difference analog i s  chosen fo r  t he  following reasons. It 
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involves no more than the  two variables x and y and so solutions can be 

displayed on a piece of paper without undue d i f f i cu l ty .  Also, a t  E = 0, both 

the  d i f f e r e n t i a l  equation (44) and i t s  difference analog (45) have the  behavior 

of a center. 

t he  Crude Euler and the  Corrected Euler. 

chosen over the  I te ra ted  Euler analog because the  difference equation f o r  the  

Central  Difference analog i s  much simpler. 

T h i s  desirable  property i s  not shared by such other  methods a s  

The Central  Difference analog i s  

For E: = 0, we know t h a t  the  solutions o f  (45) l i e  on a l e v e l  curve 

of  V( x, y) where 

and 

1 2 2 
V(X,Y) = 6 ( X + Y I 2  + a (X-Y) 

2 2 a = (4-h2)/(4h ) , a > O  

2 
A l e v e l  curve of V(x,y) 

For h small, these e l l i p s e s  a re  very long and narrow. 

variables t o  u and v where 

i s  an e l l i p s e  a s  shown i n  Figure 6 where 2coscu = 2-h 

If we make a change o f  

u = +(x+y) 

v = a(x-y) 

X = u+(v/2a) 

y = U'( v/2a) 

2 2  then V(x,y) = u + v and, i n  the  u,v plane, l e v e l  surfaces of  V a re  c i r c l e  

The d i f fe rence  equation (45) becomes the difference .equation (47) 

Eu = cos w u + s i n  w v + EhU(u,v) 

Ev = -sin cu u + cos w v + ~h2aU(u,v) 
( 47) 
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The following i d e n t i t i e s  a r e  used i n  deriving the  following equations. 

2 2 1 1 1 2 cos w = 2-h , s i n  w = h a, s i n  qw = qh, cos p = a h  . 

Since a l l  solutions l i e  on c i r c l e s  i n  the  u,v plane when E = 

it i s  na tu ra l  t o  change coordinates again t o  polar coordinates. 

u = r cos 8 

v = r cos 8 

x = r cos( &&)/(ah) 

y = r cos( 8+cu)/(ah) 

2 If we l e t  w = r , then the  difference equati&&&4s@orneS - 
~ ~ 

Ew = w + EhR(w,B) 

E8 = 8-w + EhO(w,B) 
( 49) 

where R and 0 are  *-periodic i n  8. For t h e  Van der  Pol equation (44), 

we have 

I Ef(x,y,h,E)cos(8--$w) I r+Ef( x, y, h, E )  s i n (  8-$a) 

2 .  2 1 8 ( r  ,8) = O(r ,e,h,€) = =Arctan 

where t h e  arctangent is taken such tha t  -$r 5 Arctan (x) S $TT. Notice t h a t  8 
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i s  continuous and bounded i n  E a s  E + O  even though there  i s  a l / ~  

coeff ic ien t  o.n the  arctangent. It i s  also easy t o  show t h a t  both R and 8 

are continuous and remain bounded as  h 4 0  despi te  the  

coef f ic ien ts  since the formulas f o r  x and y i n  terms Of r ,B ,  and h a r e  

1/h2 and l/h 

given by (48). 

I n  the  difference equation (49) we can look f o r  e i ther  of  two things: 

1) a solution f o r  w and 8 which s a t i s f i e s  w(t+T) = w(t) and 

8(t+T) = e ( t )  + 2rr. 

equations (45) and (47). The great d i f f i c u l t y  w i t h  t h i s  method i s  t h a t  T i s  

not known a p r i o r i  since it w i l l  be, i n  general, a function of E and h. 

T h i s  represents a T-periodic solution of the difference 

2) a parametric representation f o r  w i n  terms of 8 which i s  

&-periodic and continuous i n  8 such t h a t  one solution of (49) i s  8 = 8 ( t )  

and 

u,v o r  t he  x,y planes. This i s  what i s  used i n  pract ice  since, i n  computing 

solut ions of Van der  Pol's equation (44) numerically, a periodic solution i s  

The problem 

w = w(e(t)) ,  i.e., an invariant  manifold which i s  a closed curve i n  the  

found'' when the numeric solution displays such a closed curve. N 

here i s  t o  show t h a t  such an invariant manifold ex i s t s  and t o  compare it t o  t h e  

l i m i t  cycle of (44). 

The difference equation (49) looks a l o t  l i k e  the  difference equation 
. .  

studied by Moser [ll] i f  we wri te  6 as  the  sum of  i t s  average value eo and 

the  remainder Q1 = 8 - eo. 

Unfortunately, one condition Moser requires i s  t h a t  

f(x,y,h,E) i s  odd i n  x and i n  y, we have Oo = 0 ident ica l ly  i n  w,h,E. 

?O,/aw 1 1 and, since 
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Thus, t he  work done by Moser does not apply here. 

Halanay [g] developes a theorem which can be applied t o  t h i s  problem 

a f t e r  a s l i g h t  modification. T h i s  theorem, Theorem 4 i n  Halanay [g], i s  re- 

s ta ted here without proof. 

THEOREM 9: On Existence of an Invariant Manifold. 

equation (51) where y E E , 8 i s  a r e a l  number, and Y1 and 

8 are  &-periodic i n  8 .  

Consider t he  difference 
n 

Assume t he re  ex i s t s  posi t ive constants H, K1,p, and q with 0 < q < 1 such 

that ,  f o r  a l l  t B to, lyl 5 H, and 0 5 8 5 2 , Yo, Y1 and 8 have continuous 

f irst  p a r t i a l  der ivat ives  w i t h  respect t o  y and 8 and 

I 
' I  
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ayO (6) Let A ( t )  = -(t,O) and, i f  z ( t )  i s  any solution of  Ez I A(t)z, 
aY 

then 

toto 
II 4t)ll K19 II 4 to) II 

--/ - 
.____ -~ 

f o r  a l l  t h to: 

Then, for  I€l small enough there  e x i s t s  a function p(t,B), con- 

s t a n t s  I = I ( € )  and L = L ( E ) ,  continuous and monotone i n  E, such t h a t  

L(0) = L(0) and L ( E )  >0,  L(E) > O  f o r  E # 0 and 

d) If Yo = P(to,eO), then Y(t;to,Yo,eo) = P(t,e(t;to,Yo,eo)) 

e )  T h i s  p(t,B) is unique and &-periodic i n  8 

, f )  If Yo, Y1, and 0 are T-periodic i n  t, then so i s  p. 

g) If Yo, Y1, and 0 are  independent of t, then so is p. 

. The s e t  of points (t,y,8) where y = p(t ,8) i s  an invariant  mani- 

(t,0,8) ’old of the  system ( 5 6 )  ( r e s u l t  a ) ,  it i s  never very f a r  from the  s e t  

r e s u l t  a), it i s  Lipschitzian i n  

lpproach the  manifold exponentially as  

8 ( r e s u l t  b), and solutions near y = 0 

t 3 0 0  ( r e s u l t  c). 

For the  difference equation (49), l e t  

i 

I 



and l e t  R1(w,8) = R(w,8)-Ro(w). Let wo be a solution of Ro(w) = 0 and l e t  

w E w + y. Let RL(w) denote the  f i rs t  der iva t ive  of Ro w i t h  respect t o  W. 

Then t h e  difference equation (49) becomes (52) 
0 

T h i s  equation (52) i s  of the  form of  equation (51) w i t h  t he  matrix 

A(t)  = 1 + EhR&(wo). 

t o  be sa t i s f i ed .  The problem i s  t h a t  the estimate q i s  given by q = l+ChR&(w: 

and q 4 1 as E + 0 o r  as h 0. Since the  proof of Theorem 9 depends on 

If ~hR'(w ) < 0, then the  conditions of Theorem 9 seem 
0 0  

forming a contraction mapping where the contraction constant i s  

for  some 

a = €K/ ( l -q )  

K > 0, we see t h a t  t h i s  theorem cannot be r e a l l y  applied t o  t h i s  

problem. 

Try l e t t i n g  w = p + Ehu(p,€l,E). Then the  difference equation (49) 

f o r  w becomes (53) 

l53 



where E8 i s  the  function of e,€, and w = p+Eu given i n  the second equation 

of (49). Since Ro and R1 a re  continuous i n  a l l  t h e i r  arguments, t he re  i s  

some continuous mnotone function 6( E) with 6(0) = 0 and ’ 6(€) > 0 for 

Q > 0 such t h a t  

Furthermore, we can choose h as a function of p,8, E such t h a t  ( see  Lema 12) 

and 

Thus, (53) becomes (55) 

Since u s a t i s f i e s  (54), we get t h a t  
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and that 

Thus, .by the  implicit function theorem, see [183 for example, there i s  a func- 

tion H = H(p,y,B,€) such that H(p,O, e ; € )  = 0 and 

i s  the solution of (55) for E small enough where 

and 

Let po be a root of Ro(p,O) = 0 and l e t  p = p + U. Then the 0 

difference equation (56) becomes, in terms of v, 

EV = ( I + E h R k (  po,O))v + v) ' + 'hR3( po+ v, 8, E) 

where 

R p )  = Ro(Po+ v,o) - R;(Po,o)v 

( 57) 

(57' 1 

and there i s  some S,(I VI ) > 0 f o r  Ivl  > 0, S,(I v } )  4 0  as I VI 30, and 

If none of  the eigenvalues of RL(po,O) l i e  on the imaginary axis, 

I 

I i 
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then there  i s  some 

values of  (I+€hR~(pO,O)) 

i s  a continuous l i nea r  operator L: E + B  such t h a t  v = Lf i s  the  unique 

Elhl > 0 such that ,  for  0 < Eh < Elhl, none of t he  eigen- 

l i e  on t h e  un i t  c i r c l e  and, from Theorem 5 ,  there  

bounded solution of Ev E (I+EhR$po,O))v + f. There is 8ome constant K > 0 

such t h a t  

We are  interested i n  a fixed point of  t he  non-linear operator N: B + B  

N(v) = L(EhRj+(V) + C h R  (Po+ .,e,€)) 3 

We see that,  since we have t h e  inequal i t ies  ( 5 6 ' )  and (57'), we can choose the  

s e t  s = (VEB: 1141 5 31, i.e., 3, and h as functions o f  E for E small 

enough so t h a t  N i s  a contraction mapping of  S, hence N has a fixed point 

v . Since R, i s  &-periodic i n  8, t h i s  fixed point w i l l  be &-periodic in 
2 

8. 
/ 

These r e s u l t s  a r e  s w r g z e d  in ttiE -following theorem, 

THEOREM 10 Consider t he  difference equation (49). 

Ew = w + €hR0(W,E) + €hRl(W,8,E) 

E8 = 8 - w + €hO(w,e,€) 

I 
( 49) 

where Ro and R1 have continuous first p a r t i a l  der ivat ives  w i t h  respect t o  w 

and 
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R1(w,O,E)dO = 0. 

0 

If wo is a solution of Ro(wo,O) 5: 0 and none o f  the  eigenvalues of  t he  

matrix R'(w ,0) E~ > 0, and 

functions h(E) and w(B,E,h) such t h a t ,  if 0 < E < E 0 < h < h(E), then . 

w(e,E,h) represents an invariant curve o f  (49). Also, h(E) + O  as E + O  

and w(e,€,h) + w o  a s  E +O. 

l i e  on the  imaginary axis, then there  i s  an 
0 0  

1' 

T h i s  i s  a generalization of Halanay's theorem [g] which i s  given 

here as Theorem 9. 

If the  application t o  Van der Pol's equation (44), we have 

2 R0(w,O) = $w( 4-h -w) 

2 The two roots  of Ro(w,O) a r e  w1 = 0 and w2 = 4-h . For w = wl, Rb(wl,O) = 

1 2  ~ ( 4 - h  ) > 0 and we have an invariant  curve w(0,E,h) = 0. For w = w2, 
2 2 R$w2,0) = -4(4-h ) < 0, and we have an invariant curve 4-h . Thus 

we see t h a t  the  cen t r a l  difference analog (45) t o  the Van der  pbl equation (44) 

has t h e  same qua l i t a t ive  behavior (w i s  the  square of t he  amplitude). 

W(0,E,h) 

! .  



SUGGESTIONS FOR FUTURE RESEARCH 

The theory of  difference equations as  presented here i s  very in- 

complete. More work needs t o  be done wi th  f inding periodic solutions i n  c r i t i c a  

cases, i.e., i n  cases when the homogeneous difference equation a l so  has periodic 

solutions. 

the  period T i s  an i r r a t i o n a l  number. T h i s  a l so  includes the  case f o r  

Ex = Ax + f where the  matrix A 

o r  may not have simple elementary d iv i s io r s  o r  where the  matrix A i s  a T- 

periodic function of  t. 

This includes the  case fo r  Ex = x + f, considered here but when 

has eigenvalues on the  uni t  c i r c l e  which may 

More work also needs t o  be done i n  studying the  behavior of various 

difference analogs t o  d i f f e r e n t i a l  equations which a re  not considered here. 

example, what would a graph of t he  regions of  behavior of  t he  Kutta-Simpson 

analog f o r  U + 2c5 + x = 0 

discreprencies a f f ec t  the usefullness of these methods for  finding periodic 

solut ions of a d i f f e r e n t i a l  equation. 

For 

plotted as i n  Figure 3 look l ike?  How do the  

If the  d i f f e r e n t i a l  equation has a 

per iodic  solution which i s  exponentially stable,  can Theorem 10 be applied t o  

t h e  difference analog t o  show t h a t  it has an invariant  manifold which i s  close 

t o  t h i s  periodic solution? If an invariant manifold of  t he  difference analog 

i s  found which i s  exponentially stable, does t h i s  imply t h a t  t he  d i f f e r e n t i a l  

equation has a periodic or almost periodic solut ion near t h i s  manifold, 

are all questions which need t o  be answered. 

l i e t e d  here which need t o  be answered. 

These 

There a r e  many more questions not 
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